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Introduction 

1.1  Organization of this Primer 

This primer is intended as an introduction to beam optics with 

particular emphasis on neutral particle beam (NPB) optical devices. 

It explains how the motion of charged particles in magnetic and 

electric fields is calculated and how devices (primarily magnets) 

are designed, used and combined to make a beam transport system. 

The design of a transport system such as that of an NPB device 

requires very sophisticated mathematical techniques and complicated 

computer codes.  Technical reports and articles describing this 

process assume the reader has a graduate level knowledge of physics 

and applied mathematics including classical and relativistic 

dynamics, electromagnetic theory, statistical mechanics, 

differential equations, vector analysis, matrix algebra and Lie 

algebra.  It is impossible to cover all relevant topics in this 

primer.  If the reader is interested in a more thorough presentation 

of some of these topics, he is referred to an introduction book by 

Stanley Humphries, Jr. titled Principles of Charged Particle 

Accelerators, Ref. [1].  It presents topics in both particle 

acceleration and beam transport but is a long book, 555 pages. 

Like all areas of science, considerable terminology and jargon 

has developed as the area of accelerator design has evolved. Through 

exposure, familiarity with the jargon can create the illusion of 

knowledge.  It is the purpose of the primer to explain the 

fundamental principles and terminology and to bring substance to the 

jargon of accelerator design. 



The primer is divided into four sections; Introduction, 

Fundamentals of Charged Particle Optics, Single Particle Optics, and 

Collective Particle Optics.  In the Introduction, the purpose of the 

primer is explained and the beam optics of an NPB introduced. In 

the second section, Fundamentals of Charged Particle Optics, the 

concepts of phase space, nonlinear dynamics, linear maps, emittance, 

brightness, beam ellipse, machine ellipse, envelope equation, and a 

special applications section on the beam expansion telescope and the 

steering magnetic as used in an NPB device are presented.  In the 

third section, Single Particle Optics, the differential equations 

used to calculate the motion of a charged particle in an arbitrary 

magnetic field are derived and the perturbative method of solving 

them is explained. The correspondence between the nonlinear terms of 

these equations and the geometric and chromatic aberrations of a 

magnetic optics system is discussed.  Within this section, the matrix 

method of solving the linear optics of a drift space, a dipole, 

quadrupole, and combinations of them, is explained. The second and 

higher order contributions to quadrupole systems (doublets and 

triplets) are discussed.  In the final section, Collective Particle 

Optics, the contribution of the Coulomb interaction among charged 

particles in a beam is described and some techniques for calculating 

the "space charge" effect in quadrupole systems and an achromatic 

bend are described. 

The level of difficulty varies greatly throughout the primer. 

To some extent it reflects the level of mathematical sophistication 

required. For the reader with considerable technical experience some 

sections can be read very quickly.  For those less experienced in 

mathematics and physics sections 3 and 4 will be challenging. 



1.2  Introduction to Neutral Particle Beam Optical Systems 

Before we begin our study of magnetic optics, an overview of 

beam transport systems for a NPB device will be given. Although 

many concepts have not yet been explained, this will serve as a 

useful reference. 

A NPB device is used to produce a high current, high energy 

beam of neutral particles that are focused to a small spot on a 

distant target.  The size of the spot may be as small as a few 

centimeters at a target distance of hundreds of kilometers.  A 

generic NPB device is shown in Fig. 1.  It consists of a sequence 

of components starting at the ion source, followed by the radio 

frequency quadrupole (RFQ), the buncher, the linear accelerating 

section, such as a drift tube linac (DTL), the matching section, 

the 180° achromatic bend, beam expansion telescope with momentum 

compactor, the steering magnet, the neutralizer and the beam 

sensing device.  In this primer we will not describe the NPB system 

components preceeding the matching section.  We will be concerned 

only with the beam optics components following acceleration.  The 

beam optics of these components is so complicated that 

sophisticated computer codes are used in their design.  These 

calculations and a full discussion of the design is outside the 

scope of this primer. We can only explain the physical concepts and 

mathematical techniques that are used to develop these computer 

codes. 

Throughout the entire high energy beam transport (HEBT) 

system, re-occurring problems are faced by the designer. 
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Figure 1.  Generic Neutral Particle Beam Device 

The first of these begins as the beam leaves the accelerating 

section, where it starts to spread both transversely and 

longitudinally unless confined by magnetic or electric forces. 

This spreading is caused by the Coulomb repulsion of the charged 

particles in the beam, the energy spread of the particles in the 

beam, and the variation in the direction of the beam particles, the 

divergence.  Quadrupoles, magnets with two north and two south 

poles, are used as lenses to confine the beam.  The particles 

exiting the accelerator portion of the NPB devices are bunched 

longitudinally and are oscillating transversely at a frequency 

defined by the r.f. fields of the accelerating structure.  A 

sequence of quadrupoles, focusing and defocusing, are used in the 

section between the acceleration section and the 180° achromatic 

bend, to match the short period of the accelerator to the long 



period of the bend.  The main concern of the designer of the 

matching section is how to maintain its ability to compensate for 

fluctuations in the beam current and energy without increasing the 

beams emittance.  The concept of matching beams and beam emittance 

are discussed in detail in sections 2.4-8.  As with all other 

magnetic optics devices, the matching section must be aligned with 

high precision and be capable of rapid re-adjustment to compensate 

for vibration and misalignment. 

The 180° achromatic bend is a sequence of quadrupoles, used 

to focus and defocus the beam, and dipoles used to bend the 

beam.  It is designed in periodic sections which consists of FODO 

cell, in which the total phase advance is a multiple of 360°.  An 

achromatic bend is designed so that the first and second order 

aberrations are eliminated.  This is discussed in detail in 

section 4.2.  The use of sextupoles to correct chromatic 

aberrations is discussed in section 3.9.  The designer must decide 

on the number and location of the quadrupoles and dipoles in the 

bend.  This will determine the field strengths and the aperture of 

the magnets.  As was the case with the matching section, the 

alignment of the magnets in the bend is critical. Also they must 

be adjustable so as to maintain an adequate acceptance as the beam 

current and energy varies.  A major concern is the effect of 

nonlinear space charge.  The contribution of the linear space 

charge has been calculated and some additional design constraints 

have been recognized by the designers.  This is discussed in 

detail in section 4.3.  It is suspected that the nonlinear space 

charge will significantly increase the emittance since it is known 

to mix the transverse and longitudinal emittance.  To 



understand the effect of space charge on emittance sections 2.4 

through 2.9 should be read carefully.  Another concern in the 

180° bend is the effect of image charges, which are induced on the 

bend walls.  Some calculations, made to estimate their effect, 

indicate that they are small. 

After the beam exits the 180° bend, it enters the eyepiece of 

the beam expansion telescope.  The eyepiece consists of a set of 

quadrupoles (typically three) which are used to focus the beam to 

produce an expansion of the beam beyond the focal point.  The beam 

must be expanded so the divergence of the beam on exit from the 

objective lens of the telescope is very small.  The objective of 

the telescope is a sequence of quadrupoles.  Configuration of two, 

three and four quadrupoles have been investigated.  Designing with 

quadrupoles is difficult because, when they are focusing in one 

transverse direction, they are defocusing in the orthogonal 

transverse direction.  The selection and location of quadrupoles 

is a balancing act in the two transverse directions.  The problems 

associated with quadrupole triplets are discussed in some detail in 

section 3 where the matrix representation for quadrupoles is used 

to calculate beam dynamics in composite systems.  Analytic and 

numerical studies have been made of quadrupole doublets, triplets 

and quadruplets.  The quadruplet has been found to be preferrable. 

Its main advantages are that the maximum transverse excursion is 

much less in the quadruplet than in the doublet.  It is also more 

symmetric in the two transverse directions in the quadruplet. 

The major concern in the telescope is geometric and 

chromatic aberrations.  The geometric aberrations are caused 

by the nonlinearities in the magnetic fields of the quadrupoles. 



They are produced by field inhomogeneities, misalignment, and fringe 

fields.  The chromatic aberrations are a result of nonlinearities 

which depend on the dispersion and the spread in the energy of the 

beam particles.  An extensive discussion of nonlinearities is 

contained in section 2.1 and the relationship between nonlinear 

fields and aberrations is discussed in sections 3.8  and 3.9. 

Designing systems which reduce or eliminate these nonlinear effects 

is difficult.  It requires the calculation of the contributions of 

higher order terms in the beam dynamics equations.  In some cases, 

sextupoles and octupoles can be used to make corrections.  As usual, 

vibration and magnet misalignment can produce very significant 

effects in the telescope.  The magnets of the objective lens are very 

large, more than a meter in diameters, and heavy.  Maintaining 

alignment will be difficult.  As in the bend, nonlinear space charge 

is very important in the telescope.  The effect of space charge in 

quadrupole systems is discussed in section 4.2. There is a simple 

mathematical discussion of the beam expansion telescope in section 

2.12. 

To reduce the chromatic aberrations in both the telescope and 

the steering magnet (a dipole), a momentum compactor or r.f. 

deflector is used.  A momentum compactor is an r.f. cavity which uses 

the separation of particles that occurs as the beam drifts. During a 

drift, the faster particles lead and the slower particles lag.  The 

momentum compactor reduces the spread in the beam momentum by 

retarding the fast particles and accelerating the slow ones.  The 

momentum compactor is located just after the eyepiece before the beam 

expands.  Prior to reaching the compactor, the beam must have a long 

drift space so particle separation can take place. The r.f. fields 



in the momentum compactor are timed so the lead particles 

experience a retarding force and the trailing particles an 

accelerating force.  By using several cavities, harmonics of one 

another, it is possible to approximate a linear force.  This is 

preferred because the beam has spread linearly during the drift. 

Since the accelerators operate at such high frequency, the 

momentum compactor is required to operate at this high frequency. 

It has not been demonstrated that a momentum compactor can be 

constructed capable of performing this function at these high 

frequencies.  This will need to be demonstrated. 

The steering magnet must have a bore as large as the 

objective quadrupoles of the telescope.  It must be designed to 

minimize geometric and chromatic aberrations discussed earlier. 

It must be precisely aligned and it must be able to retarget 

rapidly using time varying magnetic fields.  These fields produce 

special design problems.  There is a simple discussion of the 

steering magnet in section 2.12. 

Before concluding this discussion of the HEBT, it should be 

emphasized that one can work to reduce the emittance growth and 

the effects of geometric and chromatic aberrations, but they 

cannot be totally eliminated.  The process of eliminating one 

produces or increases another one.  For example, one may be able to 

reduce an aberration by increasing the length of the telescope but 

this will increase another aberration. For an example, the reader 

is referred to the telescope discussion in section 2.12.  The only 

way these complicated systems can be optimized is with the use of 

computer codes.  The codes must incorporate as much of the beam 



dynamics as possible.  In particular they must treat the problem 

in three dimensions and include higher order nonlinearities and 

nonlinear space charge.  To obtain good system designs very good 

computer codes are required. 

All of these devices must be designed to maintain the small 

transverse and longitudinal emittance produced in the accelerator 

section.  A small emittance is needed to produce a small beam 

divergence, and a small beam divergence is needed to produce a 

small spot.  This relationship is explained in detail in the 

discussion of emittance in section 2.3  and 2.12.  To illustrate, 

consider this simple example. To obtain a small spot (10 cm) on 

target at a distance of 100 kilometers the angular spread a must 

be equal to 10~6 radians (one microradian).  This can be 

demonstrated using elementary trigonometry.  If the distance to 

the target is d, the angular spread of the beam is a, and the spot 

size is s, then 

tan a = s/d    . (1.1) 

If s = 0.1 meters and d = 105 meters, and for small angles 

tan a « a, so the divergence is 

a = 0.1 meters/105 meters = 10"6 radians. (1.2) 



Fundamentals of Charged Particle Optics 

2 .1  Introduction 

A charged particle beam consists of particles which can be 

described by the physical properties of mass and electric charge. 

Its dynamics can be described by specifying the locations, the 

momenta and energy of the particles in the beam and the time.  The 

locations are specified by three spacial coordinates, the momenta 

by the three components of momentum.  These fundamental properties 

determine how the particles interact with electromagnetic fields 

and their resulting motion.  A charged particle beam can contain a 

large number of particles.  For example, a beam with a current of 

100 mA (milliamps) has a flow of 6.25 x lO*7 particles/sec 

(assuming that the particles have a charge of 1.6 x 10~19 

coulombs, the charge of a single electron). This large number of 

particles is impossible to track even with the largest and fastest 

computers.  Fortunately to design a charged particle optical 

system, this is not required. 

Before beginning the discussion of single particle motion 

some fundamental concepts are needed. There are many concepts from 

classical electromagnetics, dynamics, and statistical mechanics 

which are used to design beam optics systems that could be 

included in this section.  However, we can focus on only a few 

important concepts:  phase space, nonlinear dynamics, emittance, 

beam ellipse, machine ellipse, acceptance, and beam envelope. 

2.2  Phase Space and Nonlinear Motion 

The concept of phase space is used to visualize the motion of 

both a single particle and collections of particles such as those 

10 



in a particle beam. Since the motion of a particle is described by 

time evolution of its three orthogonal spacial coordinates x, y, z 

(usually thought of as the directions corresponding to left to 

right, down to up and in to out) shown in Fig. 2 and the 

**X 

Figure 2.  An orthogonal three dimensional coordinate system 
(the arrows in the lines indicate the direction 
of increase in positive value of the variable) 

corresponding momenta (as defined in classical mechanics as the 

product of the mass of the particle times its velocity).  If a 

particle is moving parallel to the x-axis, then its momentum is 

the product of its mass, m, times the rate of change of x with 

time, its velocity, vx.  Thus 

Px = mvx 

The total momentum p is the vector sum of the momentum in the 

three directions 

(2.1) 

p = mvxi + mvyj + mvzk (2.2) 

where i, j and k are the unit vectors which denote the direction 

in each of the axes.  Since a single particle's motion is uniquely 

.11 



defined by the three coordinates and three components of momentum, 

the state of a particle is completely specified by a point in a 

six dimensional space. 

To simplify the discussion, we consider the one dimensional 

problem by setting y = z = v„ = vz = 0.  Each point in a two 

dimensional space is defined by a unique set of values for x and 

px. 

X 

Figure 3.  Trajectory of a particle in the two dimensional 
phase space (x,px) 

As time passes, the point in the x, px plane will change.  The path 

traced by the sequence of points when time goes from tQ to ti is 

called a trajectory in phase space and displays the history of the 

particle's motion.  For the full three coordinate and three momenta 

problem, a six dimensional space is used, and the particle follows 

a trajectory in this phase space. A  phase space can be defined 

using variables other than the position and momentum.  The 

selection of the variables depends on the problem to be solved. 

12 



The relationship between trajectories in phase space and the 

motion of a particle, can be shown by a particle executing simple 

harmonic motion in one spacial dimension. Its phase space is two 

dimensional (x,px).  The force on this particle can be written as 

F = - kx (2.3) 

where F is the force, x is the displacement from the equilibrium 

point (that of zero force, F = 0).  The position x and momentum px 

are related by Newton's Second Law of Motion 

Fx = px (= mx) (2.4) 

where the dot over the p denotes the time rate of change of p 

(the first derivative of p with respect to time).  By combining 

Eq. 's (2.3) and (2.4), we have the differential equation 

x = - (k/m) x (2.5) 

whose solution as a function of time is 

x = a sin (ut + 6) 

px = maw cos ( ut + <5) (2.6) 

px = -maw
2 sin (tot + <5) 

where a is the maximum displacement, u is the frequency of the 

oscillation, and 6 is the phase angle.  Two initial conditions are 

needed to specify the particle's motion, the position and momentum 

at t = 0 denoted by xQ and p0.  Thus 

13 



x(t = 0) = x0 = a sin 6 
(2.7) 

px(t = 0) = p0 = a moi cos 6 

Thus, the phase and maximum amplitude are obtained from 

6 = tan-1 (mtüx0/p0) and a = (x2 + (p0/mcü)
2) I/2 

o 

Using Eqs. (2.6) and (2.7) we see that k = moi2 so that the 

frequency in   is 

u = /k/m (2.8) 

This is a simple example of how the motion of a particle can be 

obtained using classical dynamics if the forces acting on the mass 

are known.  For this harmonic oscillator, there is a constant of 

the motion, the total energy E 

o   P* . 1 u 2 

E = 2i + 2 kx  * <2-9) 

Using Eq.'s (2.6), Eq. (2.9) can be written 

2 2 2  2 
ma io    2 ,,_,,.. a mw   .2. 

E = —x— cos  (ut + 6) + —-— sin  (ut + 6) (2.10) 

E =  ma2<o2/2   -'    \~V (K (2.11) 

which is independent of time. 

The phase space plot of the harmonic oscillator through one 

14 



Figure 4.  Phase space trajectory of a harmonic oscillator. 

complete cycle is an ellipse as shown in Fig. 4. The maximum 

values of x and px are determined by the energy and mass and the 

frequency of the oscillation.  Thus, we have shown that a periodic 

oscillation in one dimension corresponds to a closed trajectory in 

phase space.  The particle will continue to follow the same 

trajectory regardless of the original phase.  This same motion 

could be displayed graphically as a series of phase plots at 

discrete times.  For the harmonic oscillator the sequence is shown 

in Figure 5. 

?» ?, T>* 

Figure 5.  Series of phase space plots of a harmonic oscillator. 
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In this case, unless you have very small time steps compared 

to the period of oscillation T = 2ir/o>, it is very difficult to 

follow the trajectory.  Also, if the trajectories of many 

particles are plotted in the same phase space, it is very 

difficult to follow them on the same plot. 

A collection of like particles executing harmonic motion and 

having the same initial phase angle but slightly different 

energies, produce a series of phase space plots shown in Fig. 6. 

t-t. M.*S 

P» 

t-t.-'XJ 

Figure 6.  Phase space plots of particles with the same phase 
angle but with slightly different energies 

Since the time to a complete one oscillation, the period, 

does not depend on the energy, see Eq. (2.8), particles initially 

localized will remain localized since they return to the same 

location in phase space after one period. 

If nonlinear forces are added which involve powers of the 

displacement, a new force expression is obtained 

16 



F = -k^x + k2X2 - k3x
3 (2.12) 

Observe that when k2 and k3 are zero, the linear case, the force 

for both positive and negative values of x are in the direction 

toward the equilibrium point at x = 0, and is said to be 

restoring.  The quadratic term, with k2 nonzero, cannot be 

restoring for both positive and negative displacements.  In the 

case where k^ and k3 are zero, there is no equilibrium point and 

the motion is unbound for any initial displacement. 

The energy for this anharmonic oscillator whose force is 

given in Eq. (2.12) is 

2     .2       3     .4 
D k,X        K-X        K-X 

«-H- +~2 3- ♦ -T- <2-13' 

The kinetic energy (energy of motion) in Eq. (2.13) is px
2/2m, and 

the potential energy U is 

U = k!X2/2 - k2x
3/3 + k3x

4/4 (2.14) 

If we plot U versus x, we have the graph shown in Fig. 7, when 

k3 = 0. 

The motion of the anharmonic oscillator is bounded if the 

energy is less than the escape energy Ec, where 

Ec = k13/6k2
2 , (2.15) 

since the particle will not have sufficient energy to overcome the 

potential barrier, the bump in Fig. 7.  If the initial energy is 

greater than Ec, the motion will be unbounded.  A plot of the 

potential energy with the cubic term added (k3 > 0), is shown in 

Fig. 8. 
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Figure 7.  Plot of potential energy versus dispacement of 
an anharmonic  oscillator with k3 = 0 

Figure 8.  Plot of the potential energy versus displacement 
of the anharmonic oscillator with IC3 > 0 
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In the case shown, the sign of k3 is positive, the motion is 

bounded.  The actual shape of the curve of Fig. 8 depends on the 

relative magnitudes of k]_, k2, k3.  For some values there will be 

no equilibrium point at x2 as shown in Fig. 8.  For a potential as 

shown in Fig. 8, stable oscillations are possible about x = 0 and 

Using Newton's Second Law, we obtain the second order 

differential equation in x, 

mx = - k^x + k2X2 - k3x
3 (2.16) 

The solution to this equation can be written in terms of the 

Jacobi elliptic functions which are generalizations of the 

circular functions (sines and cosines).  Unlike the linear case 

where the frequency u is independent of energy, see Eq. (2.8), the 

frequency of oscillation for the anharmonic oscillator does depend 

on the energy.  The phase space trajectories of an anharmonic 

oscillator (k3 = 0) are shown in Figure 9. 

Figure 9.  Phase space trajectory of an anharmonic oscillator 
with k2 > 0, k3 = 0 
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In Fig. 9, the trajectories for energies less than the escape 

energy, k3/6k2, are closed, the motion is bounded and periodic, but 
12 

for energies greater than the escape energy the trajectories are 

unbounded.  Note that the trajectories have larger excursion from 

the equilibrium point for positive values of x and smaller 

excursion for negative values of x. 

Now that we understand the motion of a single oscillator or 

particle, we can investigate the many particle case.  Imagine 

placing several particles, noninteracting, in the phase space of 

Fig. 9.  If all of them have nearly the same energy, which is less 

than the escape energy, they will all follow periodic trajectories 

but with different periods.  Thus the time for each to make one 

complete trip around the loop will differ. Recall that the period is 

a function of energy, so that particles will arrive at their 

starting point at different times.  Therefore, a bunch of particles 

starting in the same region of phase space will become distributed 

(dispersed) about the phase space with the passage of time. 

Before concluding this discussion of motion in phase space, we 

consider a few other ideas.  Let us assume that the k]_, k2, k3 vary 

with time, not as a continuous function of time but change suddenly 

or jump and then remain constant between jumps. An example of such a 

case is shown in Figure 10.  This produces a sequence of 

^  

K, , 

K<   
K, • ' I 

«1 

*•.. 

Figure 10.  Plot of k versus time, t 
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phase space trajectories which change with each change in the 

value of k.  The trajectories appear as segments as illustrated in 

Figure 11. \ 

Figure 11.  Trajectory in phase space for a sequence of 
anharmonic oscillators 

In the following section on single particle optics it will be 

shown that the equations which describe the transverse motion of 

the beam particles, (those perpendicular to the direction of beam 

propagation), are those of the anharmonic oscillator but in more 

than one dimension.  It will be shown that as the beam travels 

through the transport system, a sequence of optical elements, its 

motion is described by a sequence of anharmonic (nonlinear) 

oscillators with changing values of k. The anharmonic oscillator 

equations are used because all continuous nonlinear forces can be 

expressed as a power series whose lower order terms are assumed to 

dominate.  However, this is not true for space charge forces. 
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2.3 Linear Maps 

Until now we have considered motion that can be described 

continuously in time.  The equations which describe this motion 

are differential equations and the functions are sines and cosines 

or the elliptic functions.  It is possible to calculate the 

transport of a particle through a beam optical system in the 

linear approximation by using linear maps.  An example of a linear 

map is 

xl = Mll*o + M12Po 
(2.17) 

pl = M21xo + M22Po 

For the harmonic oscillator, which also applies to all linear 

cases, the map can be represented by a matrix, an array of elements 

in columns and rows.  Matrix algebra, rules for multiplying 

matrices and vectors, is used to simplify these calculations.  A 

vector y can be written as a column whose elements are the 

components of the vector.  The position of a particle can be 

written as a vector whose components are the x, y and z values. 

The momentum can be written as a vector whose components are px, 

Py, pz.  A vector of six components can be formed by combining the 

position and momentum vectors to obtain (x, px, y, py, z, pz). 

As a column vector, labeled W, this vector can be written 

x 

Px 

y 

p} 

z 

Pz 

/ 

W = (2.18) 
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Thus the components of W can be written w^ = x, W2 = pXr 

w3 = y, W4 = py, W5 = z and wg = pz.  The map denoted by M, can 

be written as a matrix with thirty-six elements 

M = (2.19) 

Mil Ml2 M13 M14 M15 M16 

M2l M22 M23 
M24 M25 M26 

M31 M32 M33 M34 M35 M36 

M41 M42 M43 M44 M45 M46 

M51 M52 M53 M54 M55 M56 

M61 M62 M63 M64 «65 M66 

To simplify the expression, we consider only the x, px case. 

Thus W has only two components.  Let W(0) be the vector whose 

values are the dynamical variables at time t0 and W(l) be their 

values at t1#  Thus w(l) can be calculated using 

W(l) = MW(0) 

or 
'Wjd) 

W2(l), 

«11    M12 

M21    M22, 

Wx(0) 

W2(0) 

(2.20) 

Matrix multiplication with the column vector gives the result 

'Wi(l)' 

W2(D 

M11 Wi(0) + Mi2 W^.(0) 

M21 Wi(0) + M22 WxJO), 

(2.21) 

thus 

Wi(l) = y  Minw-j(o) 
j=l 

(2.22) 
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The sequence of linear maps can be written in matrix form as 

,(2) M(l) ,  M(2) M(l)      M(2) M(l)    (2)  (1) 
11 M 11 +  M 12 M 21      M 11 M 12 + M 12 M 22 

M
2
M1  =l I (2.24) 

M{2) M(1) +  M(2) M(1)      M(2) M(1) + M(2) M(1) n  21 
w
n  

+  M 22 M 21      M 21 M 12 + M 22 M 22 

The ij element of the matrix product is 

(M2Ml)ij 
=  R|1 ^11     M(kjJ (2.25) 

To illustrate how the matrix method is used, we calculate the 

matrix elements for the harmonic oscillator. From Eq's. (2.6) and 

(2.7), we have 

x  =   x0  cosoit   +   (p0/mü))   sinut 

Px  =  Po  coscjt  -  mü)x0  sinut 

In matrix notation this can be written 

cosüit I/mo)  sincjt 

i-mu  sinwt       cosüit 

(2.26) 

(2.27) 

Note for this case the matrix elements are continuous functions of 

time.  It will be shown later in the single particle section that 

the elements do not need to be functions of time.  For the case of 

a sequence of two oscillators with different k values, the matrix 

equation is 
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'x(t2>\ /COSü>2 (t2~ti) l/mü)2   sin  u>2   (t2  -   ti) 

Px(t2)/        \-mu2   sin<jJ2(t2   -   ti)        cosw2   (t2   -   tj) 

x 

(2.28) 

'costo^t]        l/mui sinuiti 

-rnoij   sinwiti cosw[ti 

where 

u 
k k 

.   =     / —    and  u.   =   / -i       . (2.29) 
2 m l m 

Thus by using matrices it is possible to track the particle through 

a sequence of elements.  Note that the matrix elements do not 

depend on the values of x and p.  This is not true for the 

nonlinear case.  This matrix method makes the calculation of the 

piecewise linear case much easier.  Figure 11 shows a sequence of 

trajectories that corresponded to the k values shown in Figure 10. 

There is a map which corresponds to each segment of the 

trajectories as shown in Fig. 11. 

2.4  Emittance and Brightness 

It has been widely recognized that emittance alone is 

insufficient to describe the effects of space charge and optical 

aberrations on a charged particle beam.  They will be described in 

detail in sections 3 and 4.  The description of a beam of charged 

particles is a complicated topic conceptionally.  For an in-depth 

discussion, the reader is referred to an excellent article by C. 
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Lejeune and J. Aubert, titled, "Emittance and Brightness: 

Definitions and Measurements," Ref. 12.  The topics presented in 

this subsection are a summary of their article.  It should be 

consulted for more detail or if further clarification is needed. 

To design and evaluate the performance of a beam transport 

system, the energy distribution of the beam (kinetic energy and 

energy spread), the total beam intensity, and the time structure 

is needed.  There are two analytical methods used to study the 

dynamics of charged particle beams.  One method is the "paraxial 

ray formalism" (described in section 3) which uses second order 

differential equations to calculate particle trajectories in real 

space.  In the linear approximation (called the Gaussian optics 

approximation), the particles are assumed to travel along the 

optical axis and only the linear transverse variation of the 

electric and magnetic fields are included.  The equations are 

similar to those of corpuscular optics (light as particles). 

Beams in a transport system are not perfectly linear and 

nondispersive.  They have a thermal velocity spread and are 

influenced by nonlinear forces which produce geometric and 

chromatic aberrations, and by space charge and element 

misalignment effects. The concepts of "emittance" and "brightness" 

have been added to the paraxial formalism in an attempt to solve 

these problems.  As beam transport systems with higher currents 

and energies were being designed, the "Hamiltonian formalism" was 

adopted.  An example of this method is the Lie algebraic method 

developed by A. Dragt.  It is used to calculate trajectories of 
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points in phase space, as was described earlier in this section, 

and to study the evolution of the distribution of points defined 

by a density distribution function.  Liouville's theorem, which 

for Hamiltonian systems states that the density in phase space is 

invariant along the trajectory of a given point, is used to 

express the emittance and brightness in terms of invariants 

(unchanging quantities).  This will be explained in more detail 

later. 

2.5  Hamilton Mechanics 

For those familiar with classical mechanics the following 

brief description of the Hamiltonian formalism should be 

sufficient to understand the concepts of emittance and acceptance 

described later.  For those not familiar with classical mechanics 

a standard text on the subject may need to be consulted. 

The Newtonian equations of motion are identical to the 

Euler-Lagrange equations which use the Lagragian, a function of a 

set of generalized coordinates  (positions) and their time 

derivatives qi   =  dqj/dt (velocities).  A dynamical system which 

has k degrees of freedom can be described by 2k dynamical 

variables and time.  The motion of a particle in a three 

dimensional space, three degrees of freedom, is described by six 

dynamical variables.  The conjugate momentum in terms of the 

Lagrangian, L(qi,q£,x), is 

3L 
Pi = —     • (2.30) 

aqi 

A new function, the Hamiltonian H(pj, qj, t) can be written in 
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terms of the Lagrangian as 

H(pir q{,   t) = \       piqi - L (2.31) 
i = l 

The equations of motion, which consist of a set of 2k first order 

differential equations, can now be written as 

qi = dqi/dt = 9H/9Pi 
(2.32) 

Pi = dpi/dt = -3H/8qi 

For each degree of freedom, there is a pair of equations. A 

dynamical system is said to be Hamiltonian if there exits a 

function H which satisfies these equations of motion. 

Starting with the time derivative of the Hamiltonian 

<!ü = y (UL ^1 + lH ^-L) +  IS. 
dt   i^1  3q  dt   8pi  dt    at 

and using Eqs. (2.31) it can easily be shown that 

dH _ _3H (2.33) 
dt   3t 

Thus the Hamiltonian is a constant of the motion, time 

independent, if it is not an explicit function of time.  The 

Hamiltonian is identified as the total energy of a system if it 

can be written as a sum of the total kinetic energy and a velocity 

independent potential energy.  For the particular case of 

electromagnetic forces which has velocity dependent forces, the 

Hamiltonian can still be identified with the total energy since 

the canonical momenta incorporate the velocity dependent vector 

potential. 
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2.6  Advanced Concepts in Phase Space, Liouville's Theorem and 

Brightness. 

The motion of a dynamical system with k degrees of freedom 

can be represented by the position of a point with coordinates 

(qlf qk, p]_, ...pk) in a 2k dimensional space, "phase space".  For 

a gas of N particles, each with three degrees of freedom, the 

system at time t would be represented by a set of points in 6N- 

dimensional  phase space, "Tg space".  Associated with each set of 

points in TgN is a real density in phase space described by 

fgN, the density distribution in phase space. If the N identical 

particles are noninteracting, the Hamiltonian of each particle 

depends on only six coordinates and the motion is described 

by six equations.  In this case the motion will be described by a 

trajectory in the six dimensional space r6.  The state of the 

whole system at an instant of time is described by a set of points 

in r6, the real density in phase space.  The distribution function 

of density fg(p,q,t) describes this density.  The number of points 
-»■ + 

near the point p,q at time t is defined as 

d6N = f6(p,q,t) d1%  . (2.34) 

If the motion associated with each degree of freedom is 

independent of the other two, the Hamiltonian can be separated 

into a sum 

H(p,q,t) = Hi(pi,qi,t) + H2(P2»q2»t> + H3(p3,q3,t).    (2.35) 

where the equations of motion for each are 

Pi = - 3Hi/9qi 
i = 1,2,3 (2.36) 

qi = 3Hi/3pi 

In this case, the motion of a particle can be represented by a 
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trajectory in each of three two-dimensional phase planes ^ 

associated with each degree of freedom.  Some properties of 

trajectories in phase space can be obtained using the Hamiltonian 

formalism, without a detailed knowledge of the individual 

trajectories.  They can be summarized as follows: 

1) The trajectories in phase space depend uniquely on the 

initial values (p0,q0) and the time.  Thus trajectories starting 

at different points at the same time nowhere intersect. When the 

Hamiltonian is time independent, the trajectories in ^ are 

independent of time and cannot intersect.  For example, the 

trajectories for the harmonic oscillator are concentric ellipses. 

Oscillatory systems with finite periods have closed trajectories. 

2) A boundary in the phase plane, c, that encloses a group 

of particles, at time t, will transform into a boundary C2 at time 

t2 enclosing the same group of particles. 

3) Phase space domains bounded by straight lines or by 

ellipses are convenient to use for linear sytems of forces.  In 

this case there exists a linear transformation which maps the 

initial coordinates into their final values.  For linear 

transformations, straight lines map to straight lines and ellipses 

to ellipses.  The area of the ellipse is conserved in linear 

systems, thus the emittance is conserved.  This is used later in 

the discussion of the beam ellipse. 

We are now ready to describe Liouville's theorem involving the 

density function f in phase space. It states that for a Hamiltonian 

system, the density of particles in phase space is invariant along 

the trajectory of a given point.  This is based on the fact that 
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the total time derivative of the density distribution function is 

zero.  As a result of Liouville's theorem, the shape of the domain 

boundary in phase space may change but the volume enclosed remains 

constant. 

For a system of charged particles with external electric and 

magnetic fields to be Hamiltonian, it must satisfy several 

condtions.  Wave mechanics is not needed to describe the system's 

behavior.  There is no electromagnetic radiation.  There are no 

close range interactions, such as collisions and no long range 

velocity dependent interactions such as those caused by collective 

space charge fields. 

Liouville's theorem applies to fgN for a system of N 

nonidentical particles each with three degrees of freedom in a 6N 

dimensional phase space r6N.  If all the particles are identical, 

it applies to fg in the Tg phase space.  If only two of the 

degrees of freedom are coupled, then it applies to f4 in a T4.  If 

all the degrees of freedom are uncoupled then it applies to f2 for 

each of three r2 spaces.  The f2(Plr<Jl) 
is defined as a projection 

of the r6 onto a r2 space, where 

f2(Pl'<?l) = //J/f6(Pl'<31'P2'<52'P3fa.3>dP2dq2dP3dq3      (2.37) 

and 

N = J/f2(Pl'(3l)dPld<3l (2.38) 

The area in the qi,Pi space is 

A = // dpidqx . (2.39) 

This should not be confused with the density distribution function 
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d2(pi,qi) - f6(pi,qi,0,0,0,0) (2.40) 

which is a section of the Tg phase space. 

When interparticle coulomb forces are present, the conditions 

of Liouville's theorem are not satisfied.  It has been proposed by 

Lichtenberg, ref. [13], that when there are very small 

correlations between particles, Liouville's theorem holds 

approximately in the Tg phase space.  This small correlation 

condition applies to situations where the number of particles in 

the Debye sphere surrounding any particle is large, thus when 

AD >> n~l/3 => (spacing between particles) (2.41) 

where n is the density of charged particles in real space and XD 

is the Debye length, the ratio of the thermal velocity, (kT/M)1/2, 

to the plasma frequency up = (q2n/MeQ)V2, where q and M are the 

particle charge and mass.  In this case, the smoothed out 

potential, due to all the particles, can be calculated from the 

density distribution in real space and its contribution included 

in the Hamiltonian system of forces.  An example of the procedure 

is discussed in section 4 on space charge effects. 

We consider a beam consisting of identical, nonradiating, 

noninteracting particles each having their velocity component in 

the "direction of propagation" much larger than those of the 

transverse direction.  In this case the motion of the particles in 

the beam can be represented by trajectories in rg.  in general, the 

axial and transverse motions are coupled and therefore they occupy 

a six-dimensional hypervolume in r6 to which Liouville's theorem 

applies.  The time evolution of the beam is described by the time 
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evolution of the distribution function fg(x,y,z,px,py,pz;t). 

The density distribution can be written with respect to the 

design trajectory defined by z~ and its design momentum poz 

f6(x,y,Az,px,py,Apz;zq) 

where Az = z -zq and Apz = pz -poz- 
This description is explained 

in more detail in section 3.  If z, the propagation coordinate, is 

taken as the independent variable in place of time, the density 

distribution relative to the reference particle can be written 

fg(x,px,y,Py,At,-AH;z) . 

The At and AH correspond to the phase shift and energy difference. 

If the transverse and axial motions are uncoupled, then the r6 

separates into a r4 transverse space (x,px,y,py) and a ?2   axial 

phase space (Az,Apz) or (At,AH). 

Experimental results for the transverse motions are usually 

expressed in the two planes x,x' and y,y where x  and y  are the 

gradients of the trajectories in the x-z and y-z planes.  Thus 

x' = dx/dz 
(2.42) 

y' = dy/dz 

In the paraxial approximation x' = tan ax « ax and y* 
a   ay.  Thus 

x' and y' are the direct measure of the angle between the particle 

trajectory and the optical axis.  These spaces (x,x') and (y,y') 

are referred to as trace spaces.  They are not phase spaces since 

x' is not the conjugate momentum of x and y1 is not the conjugate 
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momentum for y, and Liouville's theorem does not apply in these 

spaces.  The relationships between the momentum px and x' is 

px = m0cßYx' + qAx (2.43) 

where ß and Y are the relativistic parameters for the axial 

motion, 

3 = vz/c and Y = 1/(1 - ß2)1/2 (2.44) 

and Ax is the x component of the magnetic vector potential, 

(B=vxA). In the case where (Ax = Ay = 0), the volumes in phase and 

trace space are related by the expressions 

ITA   =   (M0cßY)
2V4 

£4<x'Px'y'Py) = P4<x'x'»y-y')/(m0ci3Y)2 (2.45) 

where ~1/%  is a volume in r4 and V4 is the volume in trace space. 

The hyperemittance, e4, is related to the hypervolume  V4 

enclosing all particles in the T4 trace space: 

e4 = V4/TT
2
        (ir2rad2m2) . (2.46) 

The brightness, B, is the average value of the density in trace 

space: 

B = p"4 = I/V4 = I/TT2e4 (A rad~2m~2) . (2.47) 

The brightness is conserved only when the force fields are 

Hamiltonian, no particles are created or lost, the axial and 

transverse motions are uncoupled, the axial velocity is constant 

over any cross section and along the optical axis and the magnetic 

field is entirely transverse (Ax = Ay =0). 
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The normalized hyperemittance is the hypervolume in 

transverse phase space 

e4n = ß2Y2V4/ir2 = 82Y2£4 . (2.48) 

The normalized brightness is 

Bn = lm02c2/-^ = B/ß2Y2 . (2.49) 

or 

Bn = I/7r2e4n . 

The density distribution functions are determined 

experimentally in the trace planes T2.  The emittance is defined 

by 

ex _ Ao
xA =  -//dx-dx'      (rad - m) . (2.50) 

This definition of emittance is used for projections of 

distribution as described earlier.  For the emittance in x and y 

directions to be invariant, the motions in the transverse 

directions must be uncoupled.  The normalized emittance en is 

defined by 

enX =JT2x/1Tmoc = PzA2x/irmoc (* rad_m) •       (2.51) 

where^f2x ^s tne area ^n Pnase space, A2
X is the area in trace 

space. 

Optical elements in general produce magnetic fields that 

couple the transverse components of the beam.  However, in an 

infinite magnetic quadrupole with hyperbolic pole pieces 

(Av = Av = 0) the forces are linear and the x and y motions are x    y 

uncoupled. 
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2 -1     Acceptance 

A beam transport system must be designed to guide a given 

beam of known current and emittance while reducing particle loss 

and the deterioration of the optical properties of the beam.  The 

acceptance domain is the region of phase space in which the 

motion of all particles injected at the entrance will be 

transmitted without loss.  The acceptance domain is equivalent to 

the maximum hyperemittance domain that a beam may occupy if it 

passes through the system without loss.  For uncoupled transverse 

components the acceptance area in T2 

Y* = A2
XA (2.52) 

and normalized acceptance 

Yn
x = |3YA2

X
/TT . (2.53) 

When the emittance curve for each optical element can be 

brought into coincidence with a curve along which the Hamiltonian 

is constant for that element, recall the curve of constant energy 

for the harmonic oscillator, the emittance domain is unaltered 

during transport through the element.  When this condition exists 

the beam is said to be matched to the optical element.  A 

"matching section" is an optical element which performs this 

function. 

When the forces are nonlinear, the angular velocities of 

rotation of the points in phase space vary with the radial 

distance.  (This was discussed earlier for the anharmonic 

oscillator.)  In this case the emittance diagram is deformed and 

filamentation occurs.  For some cases it is believed that the 
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process of filamentation can be reversed which would correspond to 

the reversal of the nonlinear processes that created it, an 

unwinding. 

The distribution of particles in a beam is not uniform.  Most 

experimental beams have halos, that correspond to a tail in the 

distribution.  As much as half the area occupied by a beam may 

contain only ten percent of the particles.  To describe the beam, 

intensity-emittance characteristic curves are used.  Equidensity 

contours are drawn on the emittance diagram.  The fractional 

intensity that flows inside an equidensity contour (£) is plotted 

as a function of the enclosed emittance 

I = ]7p2(x,x' )dxdx' 

c  = - /  x'dx' (2.54) 

IT and ET are the total intensity and total emittance of the 

beam.  A "perfect beam" is one for which the projections in each 

of the planes (x,y), (x,x'), (y,y') and (y',x') of the trace space 

have a uniform density in elliptical boundaries.  In Fig. 12 (a), 

the curve marked I is that of a "perfect beam", the curve II is 

for one with a uniform density in T4, and curve III is for the 

Guassian distribution in T4 or T2. The curve for real beams are 

characterized by two emittances eg0 and ec.  The e90 encloses 90% 

of the total intensity of the beam and ec is defined as the value 

of the emittance at which the line tangent to the emittance curve 

at the orgin has a value It, the total current, as shown in 

Fig. 12(b). For a Gaussian beam, 63% of the total intensity 
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correspondes to ec and 86.5% to 2ec.  These correspond to f^   and 2 

times the standard deviation of the Gaussian function. 

M/lr 

Frl/I, 

I   ' ^^ 1/ I 

1/ \ / \ ! BF=-Ltana 
If     */ 1 1 IT* 

1 yV\a I ' 
© 

*».C       *«.F       'ill 

(a) "Intensity-emittance characteristics" for various hypereilipsoidal distribu- 
tions: (I) Kapchinsky-Vladimirsky distribution of a "perfect beam"; (II) uniform density in 
r4 four-dimensional trace space; (III) Gaussian distribution, (b) The meaningful parameters 
of an "intensity-emittance curve": (M, enclosing 90% of the total beam intensity, and ee, 
the "emittance constant" with its appropriate percentage of/,, F„.,;;for a Gaussian distribu- 
tion, this is 63%. (c) The meaningful parameters of an "intensity-hyperemittance curve": ttjm 

and t«, the "hyperemittance constant," with its appropriate percentage of Ir, F,*j. c,and tt.r 
are the emittance and hyperemittance enclosing the factor F of the total 
beam intensity. 

Figure 12.  (Figure from Ref. [12]) 

2.8  RMS - Emittance 

The concept of the root-mean-square (rms) emittance was 

introduced by Chasman et al (1969) in an attempt to relate the 

equivalent "perfect beam" to any real beam.  For a real beam the 

projection on T2 trace space is the density P2(x,x').  The second 

moments are x7, x'^ and xx" which are related to the beam width, 

velocity spread and beam divergence.  The equivalent perfect beam 

is defined as the perfect beam having the same intensity and the 

same second moments of the trace plane projected distribution, 
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2 
//x p9(x,x')dxdx' 

x2 = T7 -T ,x* *   ■  (2.55) //P2(x,x')dxdx' 

For the "perfect beam", a uniformly filled ellipse, in which the 

half-width is xmax and the half-angular velocity spread is x'  , 
max 

see Fig. [15], it can be shown that 

maX (2.56) 
1/2 

x'   = 2(x77) 
max 

The emittance e for an arbitrarily oriented ellipse is 

-Ö —5     o   V2 e = 4(x2 x'2 - (xx1)z) 

Using emitance expression for an "equivalent perfect beam", the 

emittance of a real continuous beam can be defined in terms of 

its second moments as 

7 = 4U2 7^2 _ (^p-)2) (2.57) 

and referred to as the rms emittance, see Ref. [14]. 

For a Gaussian hyperellipsoid distribution, 86% of the total 

beam intensity will flow within an ellipse of area 7.  For 

linear focusing systems, the rms emittance will be an invariant of 

the motion.  In general the emittance in a Hamiltonian system is 

invariant, but the rms emittance 7 is not.  In linear systems the 

rms emittance is conserved by the linear transformations and not 

by Liouville's theorem. 

2.9  Beam Ellipse 

Since the number of particles in a beam is large, it is 

impossible to follow the trajectories through all the optical 
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elements.  For the linear case it is easier to use a closed curve 

or surface in phase space that encloses all the particles or some 

fraction of them.  Particles contained within the boundary 

initially will remain within the boundary in the linear case.  An 

ellipse is usually selected for the curve which is centered on the 

origin having the general equation 

ax2 + 2bxx' + ex'2 = 1 . (2.58) 

This can be written in matrix form 

m = (x x' ) /a b^ 

lb c} 
(2.59) 

In matrix notation, Eq. (2.58) can be written 

xfcBx = 1 . (2.60) 

We denote the inverse of the matrix B 

/CT11   CT12\ (2.61) 
a   =   B-l   =   I 

\a21   a22 

The inverse of a matrix is the matrix such that 

B_1B = I (2.62) 

where I is the identity matrix 

1 -C °) \0 1/     . (2.63) 

The intercepts of the ellipse with the axis are shown in terms of 

the components of a   in Fig. 13. 
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Inl « V 
jlop«*-^- 

Figure 13. A beam ellipse based on the a matrix   The maximum 
extent of the ellipse and its orientation are shown 
as a function of the matrix elements.  (Figure from 
Ref. [2]) 

The area of the beam ellipse is ire and the emittance e = (det B)~l 

= det a.     The determinant of a 2 x 2 matrix as in Eq. (2.58) is 

det B = ac - b2 and 

det a   = aua22 " a12a21 

(2.64) 

In the linear approximation, along the transport line the shape of 

the beam ellipse changes but its volume in phase space remains 

constant. 

2.10 Machine Ellipse 

Besides the beam ellipse, there is another useful ellipse, the 

machine ellipse. It will be described for closed machines, those 

in which the beam travels in a loop, i.e. the circular machines 

and storage rings.  In these machines the particles make 

transverse oscillation similiar to that of the harmonic 

oscillator but the coupling parameter varies with time or 
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correspondingly with the passage around the ring, and are periodic 

functions since the machine is a closed loop.  The general 

solution to the linear equations can be written 

x(s) = /eß(s) cos (f(s) + <f>) (2.65) 

where s, the distance along the propagation direction, has 

replaced the time, t, and ß(s) and "Ms) are periodic functions and 

e and <f> are arbitrary constants.  The equation 

Y(s)x2 + 2a(s)xx' + ß(s)x'2 = e . (2.66) 

where x' = dx/ds,a(s)= - ß*(s)/2 and Y(S)= (1 + a(s)2)/ß(s) can be 

obtained by eliminating the sines and cosines from the expression 

for x(s) and x'(s).  The particle starting on the ellipse defined 

by Eq. (2.63) will return to a point on the ellipse after each 

cycle of the machine.  Figure 14 shows the ellipse with the 

expressions for the maximum value for x and x1 and the intercepts 

of each axis as functions of 6, a, and y. 

Figure 14, 

JlOp«« - — 

SMRI 
Cintroid 

An ellipse based on the machine parameters ß, a,   y, 
illustrating single-particle motion in a closed 
machine The area of the ellipse is A = we.  (Figure 
from Ref. [2]) 
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The   intercepts  can  easily be  obtained by  setting   x   and  x'   to 

zero   in  Eq.   (2.63).     The  area  of  the  ellipse   is   TTE  =   irxmax   x'inter 

=   7rXinter  x  max* 

The reader must be careful not to confuse the beam ellipse 

with the machine ellipse.  When the beam ellipse and the machine 

ellipse are concentric and similar, the beam and machine are said 

to be matched; the particles in the phase space can be 

accommodated by the machine. 

2.11 Envelope Equations 

Instead of using the beam ellipse description above, it is 

possible to calculate the "envelope" or "envelope function" in 

place of the a and ß of Eq. (2.66).  The maximum amplitude of the 

ellipse and its derivative are related to a and ß by the 

expressions 

a  = /eß 
  (2.67) 

a' = a/e/ß 

The beam ellipse Eq. (2.64), can be written 

A2x2 - 2aa'xx' + a2x'2 = e2 (2.68) 

where A is the maximum angular deviation in the beam and 

A = (e2/a2 + a*2)1/2. If Eq. (2.67) is differentiated with respect 

to s, we have 

2 
a"x - ax" -1^=0 (2.69) 

a 
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®  , 

® © 
Emittance ellipse of a normal beam in terms of beam envelope, (a) Beam enve- 

lope in a drift space under the actions of emittance only: < - a,a, = aa. (b) Upright emit- 
tance ellipse at the beam waist, (c) Oblique emittance ellipse downstream from the beam 
waist (diverging beam): c = aa - pq. a is the beam half-width and <l> the semiangular spread. 

Figure 15.  (Figure from Ref. [3]) 

By replacing x" with the + kx, the linear approximation to x", 

we obtain the differential equation for a, the envelope equation, 

,» + ka -e2/a3 = o (2.70) 

This differs from the trajectory equation (see Eq. (2.5)) by 

the factor -e2/a3.  This factor prevents the envelope, a, from 

becoming negative. 
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2.12 The Beam Expanding Telescope and Steering Magnet 

Before starting the next section on single particle optics we 

illustrate how the concept of emittance can be used to analyze the 

beam expanding telescope as shown in Fig. 16.  The source of the 

following analysis was John Farrell, see Ref. [15]. 

f,jtf;«€. '  -,-i St«««' 

+ 

Target" 

M. 

Figure 16.  Beam Expanding Telescope with Steering Magnet. 

We consider a charged particle beam with an rms divergence, 

, and a radius at the objective lens, xmax.  The transverse 
max 
laboratory emittance erms is 

erms " xmaxx' (2.71) 
max 

The normalized emittance en is related to erms by the expression 

en = ^Erms (2.72) 
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where 

2  1/2 
,   E0 8 = e =   1 2 ' (2.73) 

Et 

Y = (i - e2)-1/2 

E0 is the rest mass energy (mQc
2), and Et is the total energy. 

Therefore, the rms radius of the beam at the objective lens 

is: 

e 
x    =  -S-S+- (2.74) 
max    SYXmax 

For a proton beam with kinetic energy of 100 MeV, using (2.72) 

8 = 0.428 and y     =   1.11. 

For the case where ~n = 0.01 ir x 10"3 rad cm and 

x'   = 1 \i   radians, using Eq. (2.73), we have 
max 

-3 
O.OITT x 10   rad cm    _ 01  x    -  7  - 2.1   cm 

max   ir(.428X1.11) 1 x 10"b rad 

For a Gaussian beam the rms radius contains 63% of the beam 

intensity and a beam radius of 2xmax (= 42 cm) would contain 90% 

of the beam intensity. 

If the effect of the momentum spread is added to the 

divergence, the spot size dependence on the geometric and beam 

parameters can be seen.  The relationship between the angular 

spread and the momentum spread can be written to first order as 
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Ap 
Ai|» _  KZ (2.75) 

To obtain this relationship, we consider two particles with 

momentum p and p + Ap in the direction of propagation as shown in 

Fig. 17. The angle of the trajectory of the first particle with 

respect to the propagation direction is <J> and the second is 

(j> + Aiji. 

Figure 17.  Figure showing the relationship between momentum 
and angle 

In time At the particles will move a distance l\   and %2   in the 

beam direction where 

l\  = pzAt/m 

l2  =   (pz + Apz)At/m 

(2.76) 

Both particles have the same transverse velocity so they will 
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travel a distance X in the transverse direction in time At.  The 

angles that each makes with the central trajectory can be written 

(2.77) 
tan   <j>  =  X/(pzAt/m) 

tan   U  -   A<j>)   =  X/((pz  +   Apz)At/m) 

For  small   angles   tan   <j>   «   §,   thus 

<J>   a  Xm/pAt 

*   -   A*    -   — At(1   +    & )   =   (J,    (X   +    Ap   /p    ) 
z z     z z     z 

Therefore, A<j> = -<f,(Apz/Pz) or -A<t>/<f> = Apz/pz.  if the focal length 

of the objective lens is FQ, from geometry, it can be seen that 

tan <j> = xmax/F0, and so $   a xmax/F0 for small angles.  The total 

divergence can obtained by adding the two contributions to the 

divergence in quadrature (the square root of the sum of the 

squares) to obtain an estimate of the total divergence 

A*t = ((x'  )2 + (A(f,)2)l/2 
max 

Thus the total divergence can be estimated by the expression, 

A*t = t(r^2 + HF)2 ^)2]1/2 t
    xmax      Fo     pz (2.78) 

The spot size rt can be obtained geometrically using the 

expression 

tan   <j>t  =  rt/D 
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Therefore, the radius of the spot is 

r  = ff_^)
2 + (Xmax)2 f-^)2]1/2 D. (2.79) 

t        Xm=v F0 P7 max       o      z 

Thus, to reduce the spot size, the focal length FQ can be 

increased, the momentum spread Ap decreased, and/or the emittance 

decreased.  Since the spot size at the objective lens, xmax, 

appears in two terms, rt can be minimized with respect to xmax 

which occurs when xmax satisfies the expression 

x2  = 7F0/(APZ/PZ) (2.80) 
max 

If xmax is Cixed then tne largest value of Ap/p permitted is 

Apz/Pz = 7F0/X2 (2.81) 
max 

If a dipole steering magnet is used to aim the beam onto the 

target at a deflection angle a, the angular spread is related to 

the momentum spread, 

Act = a Apz/pz (2.82) 

Using the same argument as was used to obtain the expression for 

A$ and imposing the condition that Aa < A<j>t, one obtains the 

condition that 

«max < Mt/(Apz/pz) (2.83) 

Thus from Eq. (2.83), we see how the maximum steering angle amax 

is dependent on the total divergence and the momentum spread Ap. 
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Single Particle Optics 

3.1  Equations of Motion of a Charged Particle in an Arbitrary 

Magnetic Field 

The procedure used to calculate the trajectory of a single 

charged particle as it passes through an arbitrary magnetic field 

will now be described.  This arbitrary magnetic field could be a 

dipole, quadrupole, sextupole, drift space or any combination of 

them. Classical or relativistic mechanics and electromagnetic 

theory, which describes the forces on the particle, are used to 

derive the equations of motion, a set of second order differential 

equations.  Since these equations are nonlinear, for some special 

cases they can be simplified by identifying those terms which are 

small and disregarding them. However, if very high precision is 

required or if strong nonlinear effects, such as resonances are 

present, it may be impossible to identify the significant terms. 

In many cases the only way that this identification can be made 

is to calculate all the nonlinear terms.  Usually this is 

difficult both analytically and numerically. 

Before deriving the equations of motion, a convenient 

reference point and coordinate system are needed.  The design of a 

beam transport system is simplified if certain symmetries are 

maintained throughout.  The coordinate system is defined by three 

spacial directions, one in the direction of the beam, the 

longitudinal direction, which is usually represented by the 

variable z, and two transverse directions, perpendicular to the 

longitudinal, and perpendicular to one another.  The coordinate 
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system   is  shown   in  Fig.   18. 

ARC Length 
(O-C) of 
Arbitrary 
Trajectory 

ARC Length 
(0-A) of 
Central 
Trajectory 

Central Trajectory 
/lies in magnetic \ 
V     midplane     / 

Figure 18.  Curvilinear coordinate system used in the 
derivation of the equations of motion 
(Figure from Ref. [2]) 

The proper identification of the coordinate directions is 

very important in identifying the direction of the magnetic 

fields, the forces, and the resulting motions of particles.  The 

proper choice is required so vector algebra can be used and so 

calculations can be simplified. 
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The concept of mid-plane symmetry and central trajectory will 

now be described.  Consider a magnetic dipole in the shape of a 

ring with a gap as shown in Fig 18.  With this shape the 

. m.'Apka 

View in Beam Direction      View From Side 

Figure 19.  A Magnetic Dipole 

magnetic pole faces are opposite and parallel to one another and 

have a constant uniform magnetic field between them.  The magnet 

field at the edge of the magnet, the fringe field, is not constant 

and therefore, it can produce significant nonlinear effects in an 

optical system.  Since the calculation of these effects is 

complicated, they will not be discussed here. By arranging the 

magnetic optical elements in a special way, the optical design can 

be simplified. Starting with an imaginary plane or surface on 

which the design or central orbit will remain, the magnetic devices 

are arranged so a particle starting on the plane will remain on the 

plane.  All the forces from external magnetic devices deflect 

particles on the plane along the surface of the plane.  As in the 

magnetic dipole case, the plane on which the particle would remain, 

the midplane, passing through the gap in the poles, parallel to the 

pole faces halfway between them, as 
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Figure 20. Outline of a quadrupole looking in the direction of the 
beam  (The central trajectory will pass through the 
center of the quadrupole, at the intersection of the 
symmetry planes.  The surfaces of the quadrupole poles 
are hyperboles.) (Figure from Ref. [2]) 

shown in Figure 19.  For a quadrupole, which has two south and two 

north pole faces, see Fig. 20, the midplane cuts through the center 

of the quadrupole dividing it into two equal parts.  Note that the 

reflective (mirror like) symmetry above and below the midplane. 

There are also symmetry planes at 45° to the midplane in the 

quadrupole.  For a pure sextupole (six poles) magnet, the midplane 

lies on the symmetry plane as shown in Fig. 21. 

Figure 21. Sextupole magnet (Figure from Ref. [2]) 
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The central design trajectory is the reference trajectory of 

a machine design.  Since the trajectory is velocity dependent, 

particles starting with the same position and angular direction 

but with different velocities, will follow different trajectories. 

The magnetic optical elements should be arranged so the midplanes 

and symmetry planes of the elements, are aligned. With this 

arrangement, the central trajectory, defined by the beam optics, 

can be made to follow the geometric symmetries. 

It is convenient to specify the position and velocity of a 

particle relative to the design or central trajectory.  The 

coordinates are defined by the direction of the tangent line to 

the central trajectory at that position.  We define the transverse 

coordinates, x and y, so by convention the x coordinate specifies 

displacements in the midplane and the y coordinate specifies 

displacements normal (perpendicular) to the midplane.  Vectors 

oriented as shown in Fig. 18 define a right-hand curvilinear 

coordinate system. 

With this reference line (the central trajectory) and 

coordinate system, the differential equations which describe the 

trajectories of particles near the central trajectory can now be 

derived.  We assume that particles with trajectories that start 

too far from the central trajectory will be lost from the beam. 

It is common for the solutions of dynamical systems to have 

time as the independent variable. However, for beam dynamics 

calculations, it is convenient to use the distance along the 

central trajectory as the independent variable. Thus all the time 

derivatives are converted to derivatives with respect to the arc 
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length s along the central trajectory relative to an arbitrary 

origin on the central trajectory.  Any point of the midplane can 

now be uniquely defined.  The y coordinate is the shortest 

distance to the midplane, the line segment BC, Fig. 21; is 

perpendicular to the midplane.  The x coordinate is the shortest 

distance from the intersection of this line segment with the 

midpoint at B to the central trajectory at A.  The line segment, 

BA, is perpendicular to the tanget line of the central trajectory 

at the point of intersection, A.  The intersection point with the 

central trajectory determines the distance from the origin to 

the intersection point, labeled A in Fig. 21. The coordinate system 
A       A A 

shows the relative orientation of the unit vectors x, y and s. 

The procedure for determining the equations of motion of a 

particle in a magnet is quite complicated.  Ref. [2] contains a 

more detailed explanation than is presented here.  We start with 

the Lorentz force, p = e(v x B), in terms of the new variables, 

x,y,s.  Electromagmetic theory (the Laplace equation) is then used 

to express the magnetic field components in series in x, y and the 

normal derivations of the magnetic field at the central trajectory. 

Here it is assumed that the magnetic field can be expanded in a 

power series, however, this condition is not always satisfied.  The 

differential equations for x and y written explicitly to second 

order (terms which have the sum of the exponents of x,y,xfy and 5 

less than or equal to two) are 
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x" + (l-n)h2x = h6 + (2n-l-6)h3x2 + h'xx' + l/2hx'2 

+ (2-h)h2x6 + l/2(h" - nh3 + 28h3)y2      (3.1) 

+ h'yy' - l/2hy'2 - h52 + higher order terms 

y + nh2y = 2(0-n)h3xy + h'ny' - h'x'y + hx'y' + nh2y6 

+ higher order terms 

1   8_By 1    *\ 
where n = - [j^- (^)]x=0  ,  B = [ — <  2" )]x=o   ' 

y      y=o 2!h B   3x   y=o 

h = — B (o,o,6), is the radius of curvature, 6 = Ap/p  , is the 
PQ  Y o 

fractional momentum deviation of the ray from that of the central 

trajectory, e is the electric charge of the particle, and By is the 

y component of the magnetic field. 

Eqs. (3.1) are nonlinear equations since the right-hand sides 

contain terms with more than one variable. In general, it is 

difficult if not impossible to solve nonlinear equations analytically. 

This is true even for the simplest equations.  We will not attempt to 

solve the general equations here.  Instead we choose to "linearize" 

them and treat the nonlinear terms as perturbations.  This procedure 

is referred to as a perturbative method.  It will provide only a good 

approximation to the actual motion or trajectory if the effects of the 

higher order nonlinear terms are small.  If they are not small, the 

approximation is useless.  Thus we are assuming that the behavior of 
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particles with trajectories near to the central trajectory can be 

predicted using the perturbative method.  Note that the coordinate 

system has already been defined to conform to this assumption. 

As an example of where this assumption fails, consider the case 

of an oscillatory system driven by a small periodic force whose 

frequency of oscillation is the same as the frequency of the 

oscillation of the system.  In this case, the small force will drive 

the amplitude of the oscillator higher and higher.  The amplitude 

will be limited by the nonlinearities of the oscillator and the 

relationship between the amplitude and frequency.  When the 

frequency of the oscillation and the frequency of the driving force 

are multiples of one another the effect is called resonance.  Thus 

through resonance a small force can produce a large effect.  For 

general nonlinear systems, the relationship between the amplitude 

of the motion and the frequency of oscillation is quite 

complicated.  In circular accelerators, in which particles 

circulate periodically, the avoidance of resonances is an important 

design consideration. For beam transport in the non-circulating 

case, it is less important because there is much less time for the 

resonances to develop. 

To find a solution to the general equations of motion for an 

arbitrary charged particle, we know that the final answer will 

depend on the initial values of x,y,x',y' and 6. For the central 

trajectory, they are all zero.  We assume that the general solution 

can be expressed as a Taylor expansion in the five variables as: 
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x = ). (x|x0y0x0 y0 6 ) x0y0x0 yQ 6 

(3.2) 

Y = I (Y|
X
0YO

X
O yQ 5 ) x0y0x0 y0 6 

The expressions in parentheses in Eq. (3.2) are the Taylor 

coefficients which are determined using the equations of motion. 

From midplane symmetry, the following coefficients are zero: 

(x|l) = (y|l) = 0 

U|Yo> = (y|xo) = ° (3.3) 

(x|y') = (y|x') = 0 
o       o 

To simplify the expressions for x and y, we retain only terms 

through second order. To this order, they can be written 

x = cxx0 + sxx' + dx6 + (x|x2) x2 + (x|x0x') xQx' 
o o  o        o    o 

+ (x|x05) x06 + (x|x'2) x'2 + (x|x'6) x'ö + (x|62)62 (3.4a) 
o   o       o   o 

+ (x|y2) y2 + (x|y0y') y y' + (x|y'2) y'2 

o  o       o  o o      o   o 

and 

Y = cyy0 + sxy' 

+ (y|x0Y0) x
0y0 

+ (ylx0y') xoy' + (ylx'y0) x'y0 o.4b> o    o      o    o 

+ (y|x'y') x'y' + (y|y0
6) Yo6 + (YIY'«) Y'« 

o o  o o o   o 

where cx = (x|xQ) , sx H  (x|x') ,   dx(s) = (x|6) , cy = (y|y0) 

and sv = (y|y') . 5y 
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Note that the primes indicate derivatives with respect to s not 

time.  Keeping only the first order terms of Eq. (3.4), we obtain 

the linear equations 

x" + (1-n) h2x = hS 

(3.5) 
y" + nh2y = 0 

Note that the y equation does not depend on the momentum deviation 

6 as does the x equation.  The y equation describes simple 

harmonic oscillation through the median plane.  Its solution is 

y(s) = A sin (/nhs + 4) (3.6) 

where A and <ji are determined from the initial conditions.  The 

motion in the x directon is also a simple harmonic oscillation but 

the equilibrium point varies as a function of 6 

x(s) = A sin (/WThs +<j>) + 6/(l-n)h (3.7) 

To obtain the equations of motion to second order for the 

case where there is no constant (dipole) term, we let k^ = -nh2 

and take the limit h+o, h'+o, and h"+o in Eq.  (3.4). This 

produces the equations for a pure quadrupole field 

x" + kix = k^xö 

(3.8) 
y" - kiy = - kxy6 
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where k^ = B0e/ap0, a is the radial distance to the pole from 

the central trajectory, pQ is the curvature of the central 

trajectory, and BQ/a is the magnetic field gradient. 

If we let ßh3 = k2 in Eq. (3.4) and take the limit h+o, h'+o, 

and h"->-o, we obtain the equations for the perfect sextupole 

;" + ko(x2-y2) = 0 

y" - 2k2*y = 0 
(3.9) 

where 

k2 = B0e/a2p0 

In general, the substitution of the expressions for x and y 

into the equations of motion gives an infinite set of second order 

differential equations.  The first order equations in x and y are 

monoenergetic, only one energy, and can be written 

k2cY = 0 :" + k2c„ = 0 

s  + k^s. = 0 

(3.10) 

s + k^Sw = 0 

where k2 = (l-n)h2 and k2 = nh2, and cx, sx and cy, Sy represent 

the two solutions.  The first order equation for the dispersion, 

6, is 

d" + k2dx = 6 (3.11) 
x   x 
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The second order coefficients which represent the contributions to 

the second order aberrations (deviation from the linear result) 

have the form 

q" + k2q  = fx  ,  q" + k2q  = fy (3.12) 
xxx        y   y Y 

where qx represents the second order coefficients and fx 

represents the driving terms which are treated as perturbations 

and whose order is one less than the order of q. For example, if 

qx  = (x|x0x') then the expression for fx is 

fx = 2(2n-l-ß)h3cxsx + h'(cxs' + c'sx) + he's'        (3.13) 

which contains products of the first order solution cx, c , sx, 

and s'. 
x 

This whole procedure is confused by the large number of 

terms and the infinite number of equations.  Obviously this 

procedure is useful only if the series for x and y converge very 

rapidly.  For those cases where the series do not converge or 

converge slowly this procedure cannot be used. 

The purpose of calculating the equations of motion for the 

general magnetic field has been to show the relationship between 

the nonlinear form of the equations and the types of aberrations 

that occur in a general system.  Terms that contain only xQ, y0, 

x', and y1 produce geometric aberrations, whose order is the 
o      o 
sum of the powers of these variable. Terms that depend on 6, the 

dispersion, produce chromatic aberrations. 
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3.2  First Order Optics 

To design a beam optical system, the first order dynamics must 

be calculated first. Later refinements can be made to include or 

reduce higher order effects.  Since the relationship between the 

beam variables to first order are linear, it is convenient to use 

linear maps as described in section 2.3. It is possible to 

calculate the dynamical variables, positions and velocities of a 

beam particle as it exits an optical element if its entry values 

are known.  Mathematically this means that the expressions for the 

final values do not contain terms with more than one entry 

variable.  To simplify the notation as was introduced in section 

2.3, we use a convention that denotes the variable by subscripts 

(elements of a vector) xj_, ^2,   X3, X4, X5, xg in place of separate 

labels x, x',y, y', l,   6.  For the linear case this can be written 

in the mathematical short hand 

6 
X
P =  I  Rp,- x-        f = 1,2,... ,6 (3.14) 
t        i=l tx      x 

where the xg are the final (exit) variable and x^ are the initial 

(entry) variables and the Rfi = (xf,xi).  In matrix notation it 

can be written 

Xf = R*i (3.15) 

The matrix R is a linear mapping of the entry variable values to 

the exit variable values as was introduced in section 2.3.  Recall 

that some of the matrix elements are zero because of midplane 

symmetry. In general the matrix R can be written 
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R = 

sx(s) 

s'(s) 
X 

0 

0 

«52 

R62 

0 

0 

Cy(s) 

c'(s) 
Y 

R53 

«63 

0 

0 

Sy(s) 

s'(s) 
y 

R54 

R64 

0 

0 

0 

0 

K55 

R65 

dx(s) 

(3.16) 

If one of the subscripts of the matrix element Rf^ is a six then 

the term containing that element is called a chromatic term, since 

it would multiply with the 6 (or x6) variable which is the 

fractional deviation from the reference momentum, the momentum 

spread.  These are called chromatic because they depend on energy 

differences.  In light optics different colors of light have 

different wavelengths and behave differently in optical systems. 

These color effects are referred to as chromatic.  Terms 

containing matrix elements that do not contain a six as a 

subscript are called geometric terms. 

If the study of particle dynamics is restricted to particles 

having the reference momentum (6 = 0), no chromatic terms, then 

the 6x6 R matrix can be reduced to two 2x2 matrices, one for each 

transverse direction.  The 4x4 matrix 

R = 

cx(s) 

c'(s) 
X 

0 

0 

sx(s) 

s*(s) 
X 

0 

0 

0 

0 

Cy(s) 

c'(s) 
y 

0 

0 

Sy(s) 

s'(s) 
y 

(3.17) 
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Dx 0 

R =        \ / (3.18) 
Dy 

where Dx and Dy are 2x2 matrices 

Dx = 

»  /cx(s)      sx(s) 

s'(s) 
X 

Dy = 

(3.19) 

Sy(s) 

s'(s) 
y 

In this case the two transverse directions are uncoupled, 

i.e. the motion in the two planes are independent. 

For this simplified condition, it is possible to construct 

the transfer matrices for simple beam elements and combine them 

using matrix multiplication to obtain the transfer matrix for the 

transport system. 

3.3  Drift Space 

The transfer matrix for free drift space of length L, which 

contains no external electric and magnetic fields is 

R =       \ / (3.20) 

If the position and angle of the drift space are x]_, x' at the 
1 

beginning, and X2, x' at the end, as shown in Fig. 22, then 
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(3.21) 

so  that 

Ax  =   X2  -   xi   =  Lx. 

x'   =  x'   =  constant 
2 1 

(3.22) 

x'- - %'. = constant 

Ax =( x2-xt) 
= L x. 

x/sconstant 

Ax*Lx' 

y =constant 

Aas-Ly 

1~ x max: /y* s constant 

xint= /i*1 constant 

Figure 22.  The transformation of a beam ellipse through 
a drift (field-free) space (Figure from Ref. [2]) 

The beam ellipse evolves so x' and x intercepts remain constant as 

shown in Fig. 22.  Over a long drift space the ellipse can become 

elongated corresponding to a spreading of the beam.  See section 

2.9 for a discussion of the beam ellipse. 

3.4 Thin Lens 

We have shown in the previous section that a drift space 

changes only the position and not the angle.  When the transfer 

matrix for a thin lens is calculated, it is found to change the 
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Consider the transfer matrix for a 

(3.23) 

(3.24) 

The matrix multiplication gives the equations 

*2 = Xl 

(3.25) 

x  = x  - xi/F 
2    1    L 

Thus matrix R does not change the position but changes the angle 

proportional to the displacement X]_. 

With this angular deflection, a particle traveling parallel 

to the reference trajectory at a distance x^ (xj = 0) will be 

deflected 

Figure 23.  The transformation of a beam ellipse through a 
focusing thin lens (Figure from Ref. [2]) 

towards the reference trajectory, as shown in Fig. 23, and 

intersect it at a distance F, so that tana (aa)   =  -x^/F.  The 

matrix R corresponds to a focusing lens of focal length F.  The 

beam ellipse of a focusing lens is shown in Fig. 24. 
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'    -./—-a constant 
Int    v ß \ 

xmait = VJ37 = constant 

Figure 24.  The beam ellipse of a focusing lens 
(Figure from Ref. [2]) 

In the case where x^ = *2'   the P°ints where the initial beam 

ellipse crosses the x1 axis are the same as the points where all 

final beam ellipses cross the x' axis regardless of the focal 

length F.  If F is small, the angular change is large and the beam 

ellipse will become very long and narrow.  A very short focal 

length will produce a large angular spread in the beam. 

A very thin quadrupole lens acts like a thin lens, but it 

focuses in one plane and defocuses in the other plane. Fig. 25 

shows a diagram of the fields of a quadrupole.  If the transfer 

matrix in the (x,x') plane is focusing, then 

Rx = (3.26) 

and the transfer matrix in the (y,y') plane will be defocusing 

Ry = (3.27) 
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Figure 25.  Magnetic fields lines of a quadrupole 
(Figure from Ref. [2]) 

3.5  Composite System of a Thin Lens with Two Drift Spaces 

We can now construct a simple composite system consisting of two 

drift spaces and a thin lens with a focal length F, as shown in 

Fig. 26. 

L, 

Figure 26.  Composite system, two drifts and a thin lens 
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0      1 /   V-l/F     1 /    \ 0      1 

To multiply two matrices together, recall that 

(ail ai2\ /bll b12' 

321 a22/ \b21 b22 

'anbii   +  ai2b2l anbi2   +  ai2a22' 

.a21bll   +   a2lb21 a2lbi2   +   a22b22, 

(3.28) 

(3.29) 

P = 

Repeating the above multiplication procedure on the above matrix, 

we have 

R = (3.30) 

LA     /  1      L2 

1 /     \-l/F   1-L2/Fj 

'1-Li/F     L2+Li(l-L2/P) 

R = I j (3.31) 
-1/F 1-L2/F 

If the drift lengths are selected to be equal to the focal length, 

then the R matrix is reduced to 
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R = I / (3.32) 
l-l/F 

In this case we see that angles are converted to displacements and 

displacements to angles, by using Eq. (3.32) to calculate x2 and 

x'.  Thus 
2 

X2 = Fx' (3.33) 

x' = -xi/F 
2 

To obtain net focusing in the two transverse directions, it 

is necessary to have either a quadrupole triplet or quadruplet. 

3.6  Magnetic Quadrupole Lens 

The concept of building an optical system using transfer 

matrices has been demonstrated and we have shown how they can 

combine to produce a single transfer matrix. We are ready to 

calculate the transfer matrix of a quadrupole lens for particles 

moving at the design energy (<5 = 0). By using Eqs. (3.5) for 

6 = 0, we have the equations of motion for a particle in a 

quadrupole field as 

dx   . —9 = kx 
ds 

(3.34) 
. 2 
^2 = ky 
dsz 
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where k = (qB0/Ym0avs), with q the particle charge, BQ/a the 

magnetic field qradient, ym0 the relativistic mass and vs 

the longitudinal velocity.  The solutions to Eq. (3.34) are 

x(s) = xi cos(/k s) + x' sin(/k" s)//k 

x'(s) = -xi /k sin(/k s) + x' cos(/k s) 

(3.35) 

y(s) = yi cosh(/k s) + y' sinh(/k s)//k 

y'(s) = yi /k sinh(/k s) + y' cosh(/k s) 

where s denotes the location along the central orbit, B0 is the 

magnitude of the magnetic field at the surface of the pole closest 

to the axis and a is the minimum distance from the center to the 

pole face. 

The transfer matrix in the (x,x') plane can be written for 

the focusing case of a quadrupole lens of length l  as 

/  cosr        sinr//k 
RF =      / 
x       I / (3.36) 

\-/k sinr        cosr 

and for the defocusing case 

coshr       sinhr/Vk 
RD =      / 1 (3.37) 
x 

/k sinhr       coshr 
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where r = /k I.     Since most quadrupole lens have r«l, it is 

possible to expand the cosine, sine, hyperbolic sine and cosine in 

a power series in r to obtain 

(3.38) 

(r + r3/6 + ...)//k 

If only the first order terms are retained as ?+0, we obtain the 

thin lens matrices of (3.26) and (3.27) for F = l/k£. 

We are now ready to investigate the focusing of a system of 

quadrupole lens, a doublet, a triplet and a quadruplet.  The 

triplet and quadruplet are candidates for the objective lens of a 

telescope and the triplet is used for the eyepiece.  Quadrupole 

lens form the basis of most transport systems.  They are used for 

focusing in an achromatic bend for example.  This will be 

discussed later. 

Starting with a quadrupole doublet, we assume the sequence of 

quadrupoles is such that in the x direction it is focusing then 

defocusing, and in the y direction it is defocusing then focusing. 

We ignore the drift space between the two quadrupoles.  For the 

(x, x ) plane the transfer matrix is 

72 



RDRF = 
X X 

coshr 

/Tc sinhr 

sinhr//k 

coshr 

cosr      sinr//k' 

i-/k" sinr   cosr 

(3.39) 

'cosr coshr - sinr sinhr   (coshr sinr + cosr sinhr//k 

(cosr sinhr - coshr sinr)/k  cosr coshr + sinr sinhr 

For the (y, y') plane, the transfer matrix is 

y y 

/cosr coshr + sinr sinhr   (coshr sinr + sinhr cosr)//k~^ 

k(cosr sinhr - coshr sinr)/k  cosr coshr - sinr sinhr 
(3.40) 

To compare the focal lengths in the two planes, we consider the 

case where x' = 0, y' = 0 and x^ = y]_.  In (x, x') plane 

X2 = (cosr coshr - sinhr sinr) x^ 

x' = (cosr sinhr - coshr sinr)//k x^ 
2 

(3.41) 

and in the (y, y') plane: 

y2 = (cosr coshr + sinhr sinr) y^ 

y' = (cosr sinhr - coshr sinr)//k y^ 
2 

(3.42) 

where X2,x'2, Y2   an&  Y'2   are tne values of x,x',y and y' at the end 

of the second quadrupole. 
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F D 

X 

/ Focal Point 

Focal Point 

Figure 27.  Sketch of the different focal lengths for 
the x and y planes in a quadrupole doublet 
(Figure from Ref. [1]) 

From the geometry and the definition of focal length, we see that 

tan x X2/F; 

tan y' = y2/Fy 

So that (3.43) 

Fx = x2/tan x^ 

Fy = y2/tan Y'2 

From the expressions for x  and y , we see that they are equal 

since x^ = y\.     Since coshr and sinhr are increasing functions of 

r, the second term of the x2 expression in Eq. (3.41) produces a 

value for x2 which is less than y2 in Eq. (3.42).  Thus, Fy   is 

greater than Fx.  When a parallel beam (x1 = y' =0) passes 

through a quadrupole doublet, it is not focused to a single point 

but along a horizontal line.  An optical system with this 

condition is said to be astigmatic.  A system which focuses a 

beam to a single point is said to be stigmatic. 

74 



To obtain a stigmatic system, a quadrupole triplet is 

required.  In this arrangement the first and third quadrupole have 

the same length, orientation, and magnetic field gradients while 

the second quadrupole is like the other two but is twice as long 

with its magnetic field gradient rotated ninety degrees with 

respect to the other two.  Thus the first and third quadrupoles 

are focusing, the second is defocusing, and visa versa for the 

other direction. 

If the drift space between the quadrupoles is ignored, it can 

be shown that the matrix product of individual quadrupoles in a 

focus, defocus, focus combination produces a total transfer matrix 

that can be reduced to 

(cosr2 coshr2    —3- (coshr2 sinr2 + sinhr2)\ 

1  (3.44) 

/k (sinhr2 - coshT2 sin^)  cosh^ cosr2    / 

For a defocus, focus, defocus combination, the total transfer 

matrix is 

(cosr, coshr2     -3- (cosr2 sinhr2 + sinr2) 

I  (3.45) 

/k (cosr2 sinhT2 - sin^)  cosr2 coshr2 

If the triplet has focusing, defocusing, focusing in the (x,x') 

plane, then it will have defocusing, focusing, defocusing in the 
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(y,y') plane.  Note that the off diagonal elements for Rpop and 

RDFD are not equal. 

F D F Focal point 

D F D 
. Focal point 

Figure   28. Improved stigmatic properties of a quadrupole triplet 
lens where (a) correspondes to the x plane and (b) to 
the y plane in the example.  Orbits of particles 
initially parallel to the axis projected in the x and 
y planes (Figure from Ref. [1]) 

Figure 28 shows the effects of the quadrupole triplet in the x and 

y planes.  However, if the trignometric and hyperbolic functions 

in the two matrices are expanded in a power series in r, they 

reduce in the lowest order to the same simple matrix 

1 2£ 
Rtriplet - (3.46) 

,-k2£3/6 

This demonstrates for this simple case and to this order, a 

quadrupole triplet is a stigmatic device. 
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3 .7  Magnetic Dipole 

There is one more very useful optical element, the dipole, 

must be discussed before we can construct composite systems such 

as the 180° achromatic bend. Quadrupoles are used to focus the 

beam, dipoles are used to bend the beam.  The tansfer matrix for a 

dipole is diffcult to calculate because of the curvature of the 

design trajectory and the corresponding change in the coordinate 

system as seen in Fig. 18.  A sector magnet dipole is shown in 

Fig. 29. 

Figure 29.  A sector dipole magnet (Figure from Ref. [2]) 

In keeping with the symmetries introduced earlier, the dipole is 

oriented so that the magnet poles are along the x direction with 

the magnetic field in the y direction.  Displacements and angle 

are measured with respect to the reference or central trajectory 

as usual.  We use the simplification that the magnetic field is 

uniform radially and fringe fields are ignored.  The pole entry 

and exit faces are perpendicular to the reference (design 

trajectory) and the motion in the (x,x') and {y,Y')   planes are 

uncoupled. 
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The transfer matrix for the (x,x') plane for the linear 

non-dispersion case is 

/cos a o sin a\ 
Rx =    / ) (3.47) 

\-l/p sin a    cos a     ! 

where p is the radius of the central orbit and a   is the sector 

angle of the magnet.  In the vertical direction the transfer 

matrix is that of a drift space, 

p a 
Ry =    | I (3.48) 

3 .8  Second Order Optics 

Second order terms as expressed in (3.4) are those that 

contain the product of two initial dynamical variables such as 

xx , x 6, etc. and the nonlinear coefficient.   To use the same 
o  o 

type of notation as was used for the linear case, a tensor T^j«., 

is used.  In this notation the coefficient (x|xQx') is written as 
o 

T112 -   (x|x0x') (3.49) 
o 

As was the situation for the linear case, coefficients of the 

nonlinear terms which contain no subscripts equal to six are 

referred to as geometric terms and correspond to geometric 

aberration.  Those that contain one or more subscripts equal to six 

are called chromatic terms and correspond to chromatic aberrations 

which depend on the momentum deviation Ap/p of the particle. 
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<*.- wo /» 

W«8) + (2n - 1 - ß)hac\ +h'ewe;                 +§*e',2 

(x|xox'o) +2(2n - 1 - ß)hacti. +h'{eMt'm +e',j.) +Ae',j', 

(*l*o*) (2- n)A3c, +2(2n- l-ß)hac,J, +/»'((:„<*', +e',4.) +Ac',<£•„ 

(x|*'o2) (2n-l-ß)ha*l +A'«,4',                  +jA»'»3 

(x|x'0Ä) (2- n)fc3*, +2(2n - 1 - ß)hasxdm +/t'(j,4', +s'Md.) +h*',d,
n 

(xl«3) -fc + (2- n)/i3i, +(2n-l-ß)h.a<t* +h'd,d:              +i*dv3 

(xlvg) »(A»-r»/l' + 20AS)e3 +/i'c,c',                   -5*e'»a 

(*|StoV'o) {h" - nh3 + 2ßh*)cv3l , +fc'(e,j', + e'v*,)  -fcc',j*, 

(x|»'o3) Hh"-nh3+2ßh>)3* +A'«,**,                   -jA«»a 

(vl*oVo) 2[ß - n)A3e,c, +Ä'(e,eV-e',c,)  +fce',c*v 

(vl«o»'o) 2[ß - n)kaex4v +A*(e,«V-<=«*») +*«'««'» 

(yjx'oyo) 2{ß - n)/i3J,e, +fc *(J,C '»-*««») +*» '•«'» 

(vlx'oy'o) 2(ß-n)hatm»v +A '(*,«', -*'.*,) +A«'.*V 

(v\VoS) fiÄ3er +2{ß - n)hac,d, -A'(e,d',-*'»<*») +Ae',<<•. 

(vlv'o*) F»A3», +2(ß - n)hatvd, -A'(«,i', - »V4i) +*»',<'» 

Table 1.  The driving terms for the nonlinear 
coefficients (Figure from Ref. [2]) 

The driving terms which produce the second order terms in a 

general magnet are displayed in Table I, which appears in Ref.[2]. 

To obtain the second order terms for a pure dipole, we let n = 0, 

B   -  0 and h = (l/p0). For a pure quadrupole, we let ß = 0, k]_ = 

-(nh2) and take the limit (h) + 0.  For a pure sextupole, we let 

k2 = Bh3 and take the limit h + 0, nh2 *  0.  By carefully studying 

the tables of Ref. [2] with these conditions, one can see that a 

pure dipole produces both second order geometric and chromatic 

aberrations, that a quadrupole to second order does not produce 

geometric aberrations but it does produce chromatic aberrations, 

and that a sextupole produces to second order both geometric and 

chromatic aberrations. 
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3.9  Aberrations in Magnetic Quadrupole Lens System 

In this subsection, analytic expressions for third order 

(spherical) aberrations in a magnetic quadrupole lens system are 

developed.  It is a summary of a paper by R. W. Moses, E. A. 

Heighway, R. S. Christian and A. J. Dragt titled, "Scaling Laws 

for Aberrations in Magnetic Quadrupole Lens Systems," Ref. [8]. 

Some of what is presented here is not new to that paper, but was 

contained in much earlier articles and books sited as references 

in that paper.  It contains a comparison of the analytical 

description and numerical integration of the quadrupole doublet 

and triple lens systems.  Embedded magnetic octupoles are used to 

reduce third order aberrations according to analytic predictions. 

It was shown by Moses (1966) that no combination of 

electro-static and magnetic quadrupoles will result in the 

elimination of third order spherical aberrations.  However, it is 

possible to reduce or eliminate these third order aberrations 

using quadrupoles and octupoles.  In Ref. [8], simple analytic 

approximations of quadrupole aberrations and octupole corrections 

are obtained which can be used as a guide in designing these 

systems.  Their equations are reproduced here to illustrate the 

method.  The reader is encouraged to read the paper for additional 

details and discussion. 

As usual, the linear properties of the system are derived 

first.  The vacuum magnetic fields for quadrupoles and octupoles 

are given in terms of scalar magnetic potentials VQ and VQ for the 

quadrupoles and octupoles as 

B = - VVQ - W0 (3.50) 
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The magnetic scalar potentials are given by the equations 

(e/p) V0 = - xy*(z) + xy(x2 + y2) <T/12 +   

(3.51) 
(e/p) V0 = - xy (x2 - y2) */3 +   

where e and p are the charge and magnitude of the momentum of the 

particle and <f>(z), <Mz) are the quadrupole and octupole gradient 

functions. 

As we have seen earlier, in Eq. (3.5), the paraxial 

equations are obtained when only the linear terms are retained. 

They can be written 

x" + 4>(z)x = 0 

(3.52) 
y" - <Mz)y = 0 

The prime indicates derivatives with respect to z.  The general 

solution to these equations can be written in terms of the initial 

conditions xQ, y0, x  and y  at z0 as 
o     o 

x(z) = x0cx(z) +  x'sx(z) 
o 

(3.53) 
y(z) = y0cy(z) +  y'sy(z) 

where cx, cy, sx and sy are the paraxial solutions with initial 

conditions 

cx(z0) = cv(z0) = s'(z0) = s'(z0) = 1   , 
*       x       y 

(3.54) 

c'(z0) = c'(z0) = sx(z0) = sy(z0) = 0 
x      y 
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The solutions of the general equations through third order 

can be written, see Eq. (3.2), with the assumption that xQ and 

y0 are small and so the nonlinear terms involving xQ and yQ can 

be ignored, 

xi   =   (xlxo)xo   +   (x|x'x'x')x13   +   (xlx'y'y')   x'y'2 

ooo0 ooo       oo 

(3.55) 

mx   (x0   +   Cix'3   +  C2x'y'2) 
o o o 

and 

Yi - (y|y0)yo + (y|y'3)y'3 + (y|x'x'y') x'2y' o       0 o  o  o       o     o 
(3.56) 

s  my   (y0  +  Diy  J   +  D2x   2y   ) 1 o o     o 

where mx and m«, are the linear magnification factors.  The 

coefficients Q.\,   0-2'   Dl an<^ D2 can ke reduced to the following 

form: 

Cx = /  * [c^4/6 + U2 + «I») c*/3] dz 
z 
o 

Z'      ' 2 ' 2 , , x 2   ,x  2  2 C2 = D2 = / X [l.5c/cy^ + («T - *) c* cj] dz (3.57) 

Dl = /  1 tcy4/6 + (<C2 + f) cj/3l dz 
zo 

The observation that the integrals are positive definite (contain 

terms which are even powers of cx, cv, c' and c' and are positive), y   x     y 
implies that it is impossible in this approximation to have these 
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coefficients equal to zero using quadrupoles alone (i|> = 0). 

3.10  Quadrupole Doublet 

The analytic expressions for the third order aberrations of 

the quadrupole doublet, shown in Fig. 30, are presented by Moses 

et al in Ref. [8]. They are reproduced here for illustration.  The 

x and y trajectories have a common object plane z0 and are focused 

to a virtual image at infinity.  Quantities are defined as they 

appear in Fig.  30. 

Figure 30.  Schematic description of a quadrupole doublet 
(Figure from Ref. [8]) 

The total focal length of the system in each coordinate (x 

and y) is given by the formula (obtain using the linear matrix 

method described earlier in this section), 
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where 

*x,yn = Fxfyn/tl " An/(6Fx,yn>] (3.59) 

and 

Fxn = " Fyn = l/*n*n     • (3.60) 

The subscript x,yn refers to either the x or y coordinate. 

Eq. (3.59) corresponds to Eq. (3.38) for the approximation of the 

quadrupole lens.  The <\>n  of Eq. (3.60) is the quadrupole gradient 

function for each quadrupole.  Within the drift space <j>n =0. 

Moses et al claim that for this system Fx2, Fxi, 
fx y can be 

approximated by the expression 

FX2 = - (dL2[l - (L2*2Al + Ä2)/6d]}l/2 (3.61) 

Pxl » ~   Fx2 LlA2 (3.62) 

fx,y = Ll/(! - dfx,y2> (3.63) 

The aperture aberration coefficients of a doublet can be 

approximated by the expression 

Cl   =   [Lx   +   (fx   -  L!)4/d3]/6   +   fLf/O^f^)   +   f 4/U2f x2
2 ) 1/3   (3.64a) 

1 x 

C2   =   D2   =   1.5[Li   +   (fx   -   LX)2   (fy   -   L!)2/d3]   +   LlV( *lf xl fyl ) 

0      , (3.64b) 
+   fx

2fy
2/U2fx2fy2) 

Di   =   [LX   +   (fy   -   Lx)4/d3]/6   +   [Lj/(£ifyi)2   +   f4/(£2fy2)2]/3   (3.64c) 
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These expressions have not been verified by this author.  This 

clearly shows that it is difficult to see the relationships between 

aberration coefficients and the design parameters even for this 

simple case. 

The results from these analytic expressions were compared with 

the numerical results of the computer codes MARYLIE and GIOS.  The 

agreement is excellent for the case of equal length quadrupoles 

which occupy less than half the length L.  If the quadrupoles are 

of different lengths and short, the agreement is still good.  When 

they are of very different lengths and occupy half of L, the 

errors are much larger. 

The quadrupole triplet case was not calculated in general.  By 

using two mirror image doublets, a symmetrical approximation to a 

triplet was obtained by Moses et al.  A numerical example showed 

good agreement with these analytical results. 

The octupole aberration correction was not present in this 

paper.  Reference was made to an earlier paper by Moses, Ref. [9], 

It is claimed that at least three octupoles ideally centered are 

needed to completely correct the third-order aberrations and that 

for miminum strength octupoles the inequalities 

(cx/cy)2 > (cx/cy)2 > (cx/cy)2 

should be maximized, with the sign of *(zb) and <Hzd) negative and 

<|>(zc) postive.  Their failure to include points zb, zc, z^ in the 

figure make it difficult to interpret this result. 

The contributions of the fifth and higher order terms must be 

evaluated to ensure that the elimination of the third order terms 
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does not simply shift the nonlinearities to higher order.  The 

complete evaluation of there higher order terms, which is a 

complicated numerical problem, is required before one can be 

assured of meeting design requirements. 
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Collective Particle Optics 

4.1  Introduction 

In the previous section the motion of a single charged 

particle in an external magnetic field was described.  The motion 

of a charged particle in the electric field produced by the other 

charged particles of the beam will now be considered.  In 

electromagnetic theory, free charges in the region of the 

calculation are treated individually as either point charges or 

collectively using a charge density p.  The electric fields 

produced by external charges and from the space charges are added 

vectorally.  To study the effect of the Coulomb interactions on 

the motion of particles, it is necessary to assume a particle 

(charge) distribution, one that seems appropriate to the actual 

problem and for which a solution can be obtained.  The 

appropriateness of the charge distribution must be verified 

experimentally.  The lack of knowledge of the actual distribution 

and the limited number of charge distributions for which solutions 

can be obtained make space charge calculations difficult. Soon, 

we will describe the calculations by E. Colton, Ref. [4], of 

space-charge and third-order aberrations in a quadrupole focusing 

system.  It should be emphasized that these calculations use two 

very simple charge distributions.  The calculations produce 

analytic expressions that show space charge and third order 

aberration effects, but they may not be useful in predicting the 

space charge effect in actual systems in which the charge 

distribution differ.  In particular, he does not solve the problem 

for a Gaussian distributed beam which is frequently used as 
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representative of an actual beam because in his words "the 

mathematical treatment is difficult." 

Ideally one would like to determine the time evolution of the 

charge distribution as the beam propagates along the transport 

system.  However, it is a complicated many body problem.  The 

evolution of the charge distribution will most likely depend 

critically on the set of initial conditions for all the beam 

particles, i.e., depends on the phase space of the beam.  The very 

large number of particles in a beam makes it impossible to track 

all the particles through the system while they undergo Coulomb 

interactions.  It is possible to do simulations using a reduced 

number of particles, by concentrating charge on larger particles. 

However, this macro particle method has computational 

difficulties when the macro particles approach one another too 

closely.  To obtain convergent results their motion must be 

restricted.  How this restriction is made directly affects the 

result of the calculations. 

Since the many particle problem is so difficult, one must 

resort to single particle calculations in the effective electric 

field of the beam.  Ordinarily, the charge distribution will not 

remain constant.  There are two approaches that can be used to 

treat this problem consistently.  In the first the initial 

distribution is specified and the particle trajectories are 

calculated and the temporal variation of the charge distribution 

is calculated.  In the second, a stationary charge distribution is 

assumed and the particle trajectories are calculated and shown to 

be consistent with it. 
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4.2  Space Charge and Aberrations in Quadrupole Systems 

To demonstrate how the space charge effect can be introduced 

into the single particle optics, a sample calculation will be 

presented.  It is based on a paper by E.P. Colton, "Space-Charge 

and Third-Order Aberrations in Quadrupole Focusing Systems", 

Ref. [4].  What follows is based on this paper.  The reader is 

referred to it for a more detailed discussion.  (The paper is not 

long. ) 

Throughout the NPB device quadrupoles are used to focus the 

beam.  Bends and telescopes use quadrupole focusing, so this 

particular treatment of space-charge and third order aberrations 

in quadrupole focusing systems is appropriate.  Colton derives a 

set of equations (x and y) for the transverse oscillations in 

electric and magnetic fields caused by space charge and magnetic 

fields of quadrupoles and octupoles.  The third-order aberrations 

of a point-to-parallel system are calculated.  A point to parallel 

system in design so all particles passing through a designated 

point will emerge from the system with x' =0.  Two transverse 

charge densities are used, uniform and parabolic. 

The equations of motion for a single charge particle are 

obtained from the Lorentz force 

-►     ->•->■->■ 

F = e (E + v x B) (4.1) 

where E, v and B are the usual vector quantities and e is the 

electric charge.  To obtain the equations of motion in cartesian 

coordinates (x,y,s), we define the radius vector 

. A Ä A 

r = xi + yj + sk (4.2) 
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v = xi + yj + sk 

and 

v = r = xi + yj + sk 

A       A       A 

where i, j, k are the unit vectors in the x, y and s directions. 

The equations of motion obtained from Eq. (4.1) are 

x = f(yBs - sBy) 

y = f(sBx - xBs) (4.3) 

s  = f(xBy - YBX) 

where m is the relativistic mass.  To convert from time t to the 

path distance s, as the independent variable, we use the following 

relationships 

x   =  x 's 
(4.4) 

X   =  x  sz   +   x's 

with 

v2   =   g2  +   x2   +  y2 ancj 
(4.5) 

•2a/2 
i-i(i + x,2 + y'2) 

Substitution of the third equation of Eq.(4.3) into the first two 

gives the following equations for x and y. 
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x"  = -T'(T' E
X  + y'ß  - (1 + x'2)Bw + x y B )        (4.6a) 

p     —2 5 y 

and 

E 
,. = _ e T'(_T' JLf  + X'BV - (1 + y'2)Bv + X'Y'BV)     (4.6b) 

P     VY y     y 

where T'= /1+x'^+y'2.  The primes on x and y denote derivatives 

with respect to s or z as was the case in Section 3.  For these 

equations the defocusing of the space-charge field E and the 

azimuthal magnetic field are combined into a net electric field 

which reduces the electric field by a factor 1/Y2.  The expression 

for the components of the electric field can be obtained from the 

equation 

E = - V* (4.7) 

where <$> is the electrostatic potential.  The 4> is obtained by 

solving the Poisson equation 

V2* = - P(x,y)/e0 (4.8) 

where p(x,y) is the charge density distribution.  Colton solved 

the problem for two charge density distributions.  He assumed the 

beam to be an ellipsoid in x-y space 

(f)2 + (g)2 = 1 <4-9> 

One distribution was for a uniformly populated ellipsoid with 

longitudinal density X(s) 
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p(x^> = po =T£r (4.10) 

and the second has a parabolic distribution 

p(x,y) = 2po[l - (f)2 - (g)2]   . (4.11) 

The corresponding expressions for <j>(x,y,s) for the two cases 

solving Eq. (4.4) are 

.2    2. 

, 1 o 
Mx,y,s) . - po "^  ; ;rb> ,4.i2, 

and 

*' ,Y* '    2'0<»*«» ( a    b   3a3(a + b) 
2 2 4 2x y      (a + 2b)y 1 

" ab(a + b) " 3b3(a + b)i 

(4.13) 

He claims that these charge distributions are self-consistent 

and do not produce emittance growth. 

The equation of motion can be written 

x" = | (-jrr-2 - 9X) (4.14a) 

and 
L 

E  m 
y  = f ( pY ° + gY^ (4.14b) 
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when the right-hand sides of Eq. (4.6) are expanded to first order 

in the displacement (x or y) or their derivatives (x' or y'). 

This is the paraxial approximation (x'2<<1,y'2<<1 and x'y'<<l). 

The longitudinal magnetic fields Bs are quadratic in the 

coordinates and can therefore be ignored.  The g in Eq. (4.14) is 

the quadrupole gradient 

., _ 8By I (4 15) 9 " TT   l x=y=0  . <4.ib> 

The EL represents the electric field in the linear approximation. 

After calculating the electric fields, Eqs. (4.14a and b) can be 

written 

x" + (k - <xksx)x = 0 (4.16a) 

and 

y" - (k + aksy)y = 0 (4.16b) 

where k = eg/p, and 

em p eb 
k  =    o o  (4.17a) 
sx  pzye   (a + b) 

o 

and 

kSv = 
aksx/b  • (4.17b) 

For the uniform distribution a = 1 and for the parabolic 

distribution a = 2. 
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The envelope equations, Eq. (2.69), are obtained from Eqs. 

(4.16a and 4.16b), 

2 
e a  + (k - akgx) a  j = 0 (4.18a) 
a 

and 

E
2 

b - (k + ak  ) b T = 0 (4.18b) 
sy     bJ 

where e is the transverse beam emittance.  Colton claims that this 

first order treatment is self-consistent since 

(1) Eqs. (4.18) are used to obtain a and b in order to specify 

ksx and kSy's; and 

(2) single particles are then propagated using Eqs. (4.16). 

Now we are ready to look at the third order terms.  The 

quadrupole fields through third order can be written 

Bx = y(g - g"/12 (3x2 + y2)) (4.19a) 

By = x(g - g"/12 (x2 + 3y2)) (4.19b) 

and 

Bs = xyg' (4.19c) 

The equations of motion Eqs. (4.6) can be written (following the 

notation of Colton) 
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x" + (k - aksx)x = (D]_ - k)xx 2 + D^y 2 + kx'yy 

+ k'xyy' + (x3/3)D2 + xy2 D3 

(4.20a) 

(4.20b) 

and 

y" - (k + aksy)y = (Ej_ + k)yy'2 + Eix'2y - kxx'y' 

- k'xx'y - (y3/3)E2 - x2y E3 

where the D and E functions are defined as 

Di = «ksx - k/2 (4.21a) 

Ej_ =   aksy + k/2 (4.21b) 

a(a - 1) k  (2a + b) 
D, SJC y-22  (4.21c) 
2   4        a2(a + b) 

o(a - 1) k  (a + 2b) 
E0*K + 5-aC  (4.21d) 
2   4        b2(a + b) 

ct(a - 1) k 
D =  *1 , r^SS. (4.21e) u3 "  4    b(a + b) 

and 

0(0 - 1) k 
E  = kjl+      ;y (4.21f) 

3  4       a(a + b) 

To include octupole lens (hard edged) the coefficient of the 

cubic terms x3, xy2, y3 and x2y are replaced.  Thus D2->-D2-3W, 

E2+E2 + 3W, D3+D3 + 3W and E3+E3 - 3W where W = eB*''/P and 

B''' =33By/8x3 at x = y = 0. 
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Particles can be tracked through the transport line using 

Eqs.(4.20) for the uniform distribution.  For the parabolic charge 

distribution a multiparticle simulation is required to obtain a 

self-consistent result. 

Colton, at this point, indicates that the quadrupole edges 

represents a major contribution to third order effects, and that 

high order terms in k(k',k") can be replaced with higher order x 

and y factors. 

Usually the contributions of the higher order terms are of 

particular interest since they contribute to the spot size or the 

divergence of the beam. By using the matrix method, as described 

in section 2 and used in section 3, and the Green's function 

integration, a standard method of solving differential equations 

in which the nonlinear terms are treated as driving terms 

(described in Section 3), he obtains the small angular error terms 

to the third order for a point-to-parallel transformation. 

Ax' = (x'|x'3) x'3 + (x'lx'y'2) x'y'2 (4.22a) 
f    fo   o     foo   oo 

and 

Ayl  =   (yLi x'2   y')   x'2y'   +   (y'|y'3)   y'3 (4.22b) 
f foooofo o 

By ignoring the effects of space charge and octupoles 

(ksx = ksy = °) initially, and integrating by parts to remove k' 

and k", the coefficients are given by 

(xf|xo
J) = Cx (sf) / t   (| S^Sx

2 + k2 -f) da (4.23a) 
o 
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1 2      2 

(x   Ix  v     )   =   -   C     (a.)   /        [MS   S   S   S     + 0   *   -  SZS   z) *   f'   oyo   ' x   v   f'   ^        L   v   x  x   y  y 2 xy 

-   S2S2k2]   da x  y     ' 

(4.23b) 

2     2 

(yf|x0
2y0) =  cy (sf) /  [K(sxsxsysy + -£j-Z -  sx sy) 

- S S k  da 
x y  J 

and 

S4 

(Y1|Y'
3
) = c' (a.) / f (- | sV2 + -* k2) da       (4.23d) 

where C'a and S'a are aa defined in Eq.(3.14).  I recognize that 

thae expreaaiona are complicated. 

The final atep, to include apace charge and octupolea, ia to 

replace k2 of (4.23a,b,c, and d) reapectively with 

a(o - Dk  (2a + b) 
k2+k2 +  5 —  + 3W (4.24a) 

a (a + b) 

„  „    a(o - l)k 
k2+k2 +  ax _ 3W (4.24b) 

a (a + b) 
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„(q - l)k 
k *k  +  a (a + b)

Y " 3W (4.24c) 

a(o - l)k  (a + 2b) 
lc -H<  +  x ^  + 3W 

b (a + b) 
(4.24d) 

The contribution of these higher order aberrations on the 

divergence of the beam.  Eqs. (4.23) and (4.24) can be reduced by 

adjusting the octupoles of the system. 

4.3  Achromatic Bend with Space Charge 

An achromatic bend is a beam transport device used to change 

the direction of propagation of a beam.  As shown in Fig. 31, it 

consists of a sequence of dipoles and quadrupoles placed along the 

bending, arc. 

Figure 31.   An achromatic bend 

The magnetic field of the dipoles change the beam direction and 

the quadrupoles focus the beam in the transverse direction. 

The term achromatic means the dispersion (I),   the spread of the 
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beam in the direction of propagation, and the momentum spread (5 = 

Ap/p) do not change as a result of the beams passing through the 

device.  To first order, the achromatic condition is satisfied 

for a lattice of identical cells if and only if 

1) Mn = I 
(4.25) 

and 

2) l  = 0 and 6=0.  (no dispersion or momentum spread) 

where M is the transfer matrix for the transverse direction, for 

each lattice cell.  A first order achromat has a total transfer 

matrix which is the identity matrix (I).  The total phase advance 

must be a multiple of 2ir (2nmr where m is an integer).  A second 

order achromat is one whose total transfer matrix is the identity 

matrix to second order of all phase space variables except the 

matrix element relating the path length I  to the square of 6.  A 

180° bend such as that shown in Fig. 31, is designed to have a 

phase advance of 720° or 90° for each section. 

The design of an achromatic bend, in which the effects of 

space charge are ignored, can be done using the available tech- 

niques.  The difficulty arises when space charge effects dominate. 

In those cases, there is usually a distinction made between systems 

in which the space charge can be approximated using a linear 

self-field and those in which the nonlinearities are important. 

In Ref. [10], Jason et al site the work of Sacherer who "showed that 

motion of the rms envelope is independent of the beam 

distribution; hence, core evolution can be described by a linear 

model," as support for their claim that a linear approximation has 
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some validity.  Also they site the work of Hofmann, "who noted 

that focused beams tend to evolve toward uniform spatial 

distribution if the nonlinearities are not such as to provoke 

instability."  They use the linear approximation to obtain the 

analytic results presented in Ref. [10]. 

They observe that even in the linear space charge case the 

longitudinal motion evolves in a quasi irreversible manner and 

couples to the transverse motion.  This occurs in the dispersive 

case such as in bending magnets.  They give the following argument 

to illustrate this point.  The transformation through dl,   an 

infinitesimal length in a bend magnet, can be written (ignoring 

motion in the y-y' plane) 

Bll B12 0 B16 

B21 B22 0 B26 

B51 B52 1 B56 

0 0 0 1 

1 0 0 0 

X 
Axd£ 

0 

1 

0 

0 

1 

0 

0 

_ 0 0 Xzd£ 1 

(4.26) 

where the left matrix is the transformation for a magnet of length 

d£ and the right matrix is the space charge kick with transverse 

and longitudinal defocusing gradients Xx and  Xz.  The separation 

into two separate parts is one way of calculting the linear space 

charge numerically.  They indicate that the presence of the Azd£ 

element is responsible for mixing the motion in the transverse 
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and longitudinal directions.  For illustration the generic form 

for the result was written 

Rn R12 R15 R16 

R21 R22 R25 R26 

R51 R52 R55 R56 

R61 R62 R65 R66 

(4.27) 

For a nondispersive system, even with space charge, the elements 

R15/ R25» R61 and R62 would be zero. For the dispersive case they 

are non-zero.  This result depends only on the space charge forces 

being linear in di. 

For the zero current case, the independence of motion in the 

transverse plane from the longitudinal motion, the achromatic 

condition, is satisfied when R16 = R26 = 0-  TheY show that this 

is not sufficient when space charge is present. By using a 

sequence of transformations, R°, R1 and R2, in which R1 contains 

dispersive elements, the other two do not, the Rt  and Rt 
^ 16      26 

elements of the total transfer matrix Rfc (= R^R^R0) can be 

written 

R 
0 1  0 

16 
R11<R15R56 + R16R66} + R12(R25R56 

and 

1 _0 1 _0 1 _0 

1  0 
+ R26R66) 

1 _0 

(4.28) 

R26 = R21(R15R56 + R16R66> + R22(R25R56 + R26R66) 
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For Rfc  and Rfc  to be zero the elements R*  and R!  must also 
16      26 15      25 

be zero.  For the dispersive case the achromatic conditions to 

first order is satisfied when R^g = R26 = R15 = R25 = 0-   They 

also show that under this transformation, Rfc, the transverse 

emittance remains constant where these matrix elements are zero. 

Their main observation was that if one is designing a 

achromatic bend assuming linear space charge that these four 

matrix elements must be adjusted to zero for each section. 

Their work does not justify the assumption of linear space 

charge.  Given the difficulties of the nonlinear space charge 

case, much additional analytic numerical and experimental work is 

reguired to demonstrate that an achromatic bend can be designed 

for the high current case. 

4.4  Scaling Relations 

This brings us to the last topic on space charge, the work of 

E. A. Wadlinger on scaling relations, Ref. [11].  Scaling has been 

used for modeling of physical problems for many years.  The most 

obvious example is the modeling of the flow of fluids around 

actual full size objects, such as boats and planes with the flow 

around scale models of these objects in wind tunnels and tow 

tanks.  Even for these very nonlinear systems, the results will be 

identical if the scaling is done properly. This approach has 

proven to be a time and money-saver. 

This same technique has been applied to the motion of a 

particle in a charged particle beam with space charge.  Wadlinger 

has demonstrated that the equations of motion for two different 

nonrelativisitic beams, with time dependent (or independent) 
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electric and magnetic external fields and with space charge are 

identical if parameters of the two beams satisfy a set of scaling 

relations.  For this case, the length, time, beam current, 

electric pole tip fields, magnetic pole tip fields and the 

normalized emittance are scaled quantities.  He assumes that the 

internal and external electric and magnetic fields can be 

expressed using multipole expansions.  This assumption is the one 

cited by those who question the validity of his approach, since 

the Coulomb fields of the beam particles cannot be expanded in 

this way. 

If this procedure is correct, then results obtained on one 

machine could be used to predict the beam dynamics on another, or 

the knowledge of the dynamics for one set of beam parameters could 

be used to predict the dynamics for another set of parameters on 

the same machine! 
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